
A Vulnerability’s Lifetime: Enhancing Version Information
in CVE Databases

Leonid Glanz
Software Technology Group

TU Darmstadt, Germany
glanz@cs.tu-
darmstadt.de

Sebastian Schmidt
Multimedia Communications

Lab (KOM)
TU Darmstadt, Germany

schmidt@kom.tu-
darmstadt.de

Sebastian Wollny
KOM

TU Darmstadt, Germany
sebastian.wollny@kom.tu-

darmstadt.de

Ben Hermann
Software Technology Group

TU Darmstadt, Germany
hermann@cs.tu-

darmstadt.de

ABSTRACT
The National Vulnerability Database (NVD) is a rich source
of information for system administrators, software engineers,
IT security consultants, and researchers in software secu-
rity. Relevant information is provided in machine readable
form and hence can be used for automated software secu-
rity management. However, we discovered that information
on affected software versions and fix information is not al-
ways available in structured form. We therefore propose
to enrich the NVD database with this information and use
a rule-based approach to extract this information from the
informal vulnerability description. Such information is use-
ful in software development to exchange or avoid vulnerable
components as well as in security research for directed cause
analysis.

CCS Concepts
•Information systems → Information extraction;
•Computing methodologies→Natural language pro-
cessing;

Keywords
Information extraction, knowledge discovery, vulnerabilities

1. INTRODUCTION
The secure operation of software systems requires current

and accurate updates on the vulnerability status of the soft-
ware itself and all of the used components. In order to aid
system developers and operators to keep their software safe
from known vulnerabilites, machine readable descriptions of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

i-Know ’15 October 21 - 23 2015, Graz, Austria
c© 2015 ACM. ISBN 978-1-4503-2138-9. . . $15.00

DOI: http://dx.doi.org/10.1145/2809563.2809612

vulnerabilites are provided to automated vulnerability man-
agement systems. These systems in turn notify developers
and operators to trigger necessary actions.

We found that for this process to work efficiently, the ver-
sion information in the machine readable vulnerability de-
scription has to be accurate. The most used source of vulner-
ability descriptions is the Common Vulnerability Enumer-
ation (CVE)[1] which was originally published to provide
a common name-space for vulnerabilities, facilitating inter-
organisational software security management. The CVE1

is used by the National Vulnerability Database (NVD)2 to
provide detailed machine readable information on software
vulnerabilities in XML files. It, however, lacks information
on the affected software version ranges and fixed versions.
The schemata define a listing for affected software versions,
but these lists are often not exhaustive. However, in order
to determine if the software product currently in use is vul-
nerable this information needs to be complete. While the
information on ranges is interesting for research in software
vulnerabilites in order to analyze the root cause of the vul-
nerability, the fix information is useful for system developers
and operators to use the next fixed version that most likely
will not break compatibility.

In order to make this version information available, we
contribute the following:

• a dataset containing detailed version information for
each CVE entry

• a mechanism for the automated gathering of this data-
set, mining the required information from multiple
sources: the CVE and the Common Platform Enu-
meration (CPE) 3

2. DATA USAGE
In order to find possibly affected components in a system

it is necessary to clearly identify the components’ versions
that are vulnerable. Moreover, in order to prevent future
vulnerabilities, information on vulnerability fixes is highly
relevant. In this section we give two usage scenarios in which
this information is helpful.
1https://cve.mitre.org/
2http://nvd.nist.gov/
3https://cpe.mitre.org/

http://dx.doi.org/10.1145/2809563.2809612
https://cve.mitre.org/
http://nvd.nist.gov/
https://cpe.mitre.org/
rst
Textfeld
Leonid Glanz, Sebastian Schmidt, Sebastian Wollny, Ben Hermann: A Vulnerability’s Lifetime: Enhancing Version Information in CVE Database. In: Stefanie Lindstaedt, Tobias Ley, Harald Sack: Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business (i-KNOW '15), October 2015. ISBN 978-1-4503-3721-2.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

rst
Textfeld

2.1 Software Development
In cases where vulnerable third-party software is the cause

for security flaws of a software system, (1) identification
of vulnerable software components and (2) replacement of
these software components by non-affected code are com-
mon steps to fill the security gap.

For the first task, the machine-readable part of the NVD
CVE data can be used in order to check if any of the used
software components is known to be vulnerable.

Having information on fixed versions of the previously vul-
nerable software components, automated vulnerability man-
agement systems could advise the usage of these versions as
part of the second task outlined before. The CVE data
released in the NVD does not contain information on fixed
versions in machine-readable form, but we observed that this
information can often be found in the informal summary.

Since version numbering schemata are often neither con-
tinuous (v2.0 might be the follow-up of v1.7) nor linear
(e.g. v1.7 and v2.0 can be developed as parallel branches)
information about only the first fixed version is not suffi-
cient. A fix in v1.7 does not always mean that v2.0 is fixed
with respect to this vulnerability. Hence, information on all
fixed versions w.r.t. their base version is needed to fulfill
the requirements. Information on fixes in combination with
vulnerability lifetime ranges can be used by version recom-
mender systems to select the correct software version to use.

2.2 Vulnerability Cause Analysis
In order to understand the cause of vulnerabilities re-

searchers and practitioners inspect source code of vulner-
able software products in order to derive new detection and
protection mechanisms to prevent vulnerabilities of the same
type in the future. In this process, information on the precise
introduction and fix of the vulnerability is valuable. Corre-
lated with the source code repository of the software product
the version information of our dataset can help inspectors
find the source code related to the vulnerability and its fix
as well as failed attempts for fixes fast and easily. With
our tool, inspectors are empowered to review the complete
evolution of a vulnerability which will likely help them un-
derstanding its cause.

The source code files of the version before introduction,
after introduction and after fix can be compared automat-
ically. Depending on the size of the change set, inspectors
can then easily point out the problem cause and begin to
derive detection and protection mechanisms.

3. DATA SCHEMA
To allow usage and extension of the provided dataset we

describe the existing data schema used4 in the NVD and our
extension of it.

Input Data Schema.
The source dataset we use was gathered from the NVD

and consists of multiple files in XML-format containing CVE
entries grouped by year. A CVE entry contains a match ex-
pression that matches the vulnerability to software products
(<vulnerable-software-list>5), the CVE id (<cve-id>),
a categorization in terms of the Common Weakness Enumer-

4https://nvd.nist.gov/schema/nvd-cve-feed 2.0.xsd
5For better readability we omit the namespace prefixes of element
names given in this section.

ation (CWE)6, references to related articles, the vulnerabil-
ity summary (<summary>) and other vulnerability specific
information. The CWE reference (<cwe>) categorizes the
vulnerability. For example, CWE id 119 is labeled Improper
Restriction of Operations within the Bounds of a Memory
Buffer, which is commonly known as a buffer overflow. List-
ing 1 shows an XML-snippet before our transformation. The
<vulnerable-software-list> contains the CPE identifiers
for Apache Tomcat Version 6.0.24 and Version 7.0.52, ad-
ditionally there is a description of the vulnerability in the
<summary> element.

<entry id="CVE-2014-0099">
<vuln:vulnerable-software-list >

<vuln:product >
cpe:/a:apache:tomcat:6 .0.24

</vuln:product >
<vuln:product >
cpe:/a:apache:tomcat:7 .0.52

</vuln:product >
<!-- ... -->

</vuln:vulnerable-software-list >
<!-- ... -->
<vuln:summary >

Integer overflow in ... Apache Tomcat before
6.0.40 , 7.x before 7.0.53 , and 8.x before
8.0.4, when operated behind ...

</vuln:summary >
</entry>

Listing 1: NVD CVE entry for CVE-2014-0099

The list of vulnerable software products (<vulnerable-
software-list>) may contain several entries for software
affected by the described vulnerability. The syntax of these
entries follows the specification of the CPE.

Output Data Schema.
In the output data, we add information extracted from

the summary of the CVE entry. We enrich the dataset with
two kinds of information for each software product in the
list of vulnerable software products:

1. The first version where the vulnerability is fixed in the
element <fix>.

2. The version range which is affected by the vulnerabil-
ity starting with the version in element <start> and
ending with the version in element <end>. The <end>-
tag is only provided if no <fix> is found, as the change
of an end version is more likely than the fix version.

To aid automated tools, we provide the version information
in the same CPE syntax as in other parts of the vulnerability
description. In cases, where the starting, ending or fixing
version cannot be extracted from the summary, only the one
that can be safely inferred is provided. As software versions
are sometimes maintained in parallel, vulnerabilities might
affect multiple ranges at the same time. In Figure 1, we
illustrate an example from CVE-2014-0099 where versions
7.0 and 8.0 have clearly defined start and fix points. In
contrast, only the fixed version and no other information
can be extracted for version 6.0.

Listing 2 shows the extended version of the previously
introduced XML-snippet. We insert our extensions at the
end of the entry tag to avoid issues with algorithms that
sequentially traverse the XML-file.

<entry id="CVE-2014-0099">

6http://cwe.mitre.org/

https://nvd.nist.gov/schema/nvd-cve-feed_2.0.xsd
http://cwe.mitre.org/

Figure 1: Extracted version information from CVE-
2014-0099 (affecting Apache Tomcat). Thick lines
denote ranges, stars are fixed versions.

<!--as before -->
<ext:ranges >

<ext:range >
<ext:fix >cpe:/a:apache:tomcat:6 .0.40</ext:fix >

</ext:range >
<ext:range >

<ext:start >cpe:/a:apache:tomcat:7 .0</ext:start >
<ext:fix >cpe:/a:apache:tomcat:7 .0.53</ext:fix >

</ext:range >
<ext:range >

<ext:start >cpe:/a:apache:tomcat:8 .0</ext:start >
<ext:fix >cpe:/a:apache:tomcat:8 .0.4</ext:fix >

</ext:range >
<!-- ... -->

</ext:ranges >
</entry>

Listing 2: NVD CVE entry for CVE-2014-0099 after
processing

4. DATA GATHERING
This section presents our approach for mining the two

target pieces of information from the informal summary: the
ranges of affected software versions and the hint information
on fixed versions, which are not always the ascendant of the
last affected version.

The extraction method consists of a set of extraction rules
and is applied to each CVE entry separately. A schematic
view on the process can be found in Figure 2.

1) Tokenization. A white space tokenizer is used to initially
split the summary text into tokens.

2) Token enrichment. Each token is enriched by a feature
vector where the single features are later used as hints to
whether a token is part of a software name, version etc.
The feature vector consists of punctuation, capitalization,
regular expressions7 and word list comparison8 features.

3) Snippet generation. Since software names and version
numbers normally do not consist of a single token, the to-
kens are grouped to snippets. This grouping is performed
by different rules based on the feature vectors. The single
feature vectors are combined to a common feature vector for
the snippet. To ensure that software names are grouped in
one single snippet, all sequences of tokens starting with a
capital letter are combined. For example

<t1>Molisoft </t1><t2>PDF</t2><t3>Reader </t3>

7E.g. [\d]+[\p{Punct}\w]* is used as a feature to detect a major
software version, or numeric regular expressions are used to detect
revision numbers
8The word list contains key words such as revision, update, rc
and build which are hints for software revisions as well as before,
earlier and after for interval boundary detection

transforms to <s1>Molisoft PDF Reader</s1>.
This combination will be applied, if the first token starting
with a capital letter is succeeded by a comma or a period.
This ensures that entities will still be separated in enumer-
ations or at the end of sentences. Furthermore, rules which
define software versions are used. Tokens with feature hints
for a major software version, a revision or a revision num-
ber are grouped as they define a software version. In this
context a token sequence like

<t1>7.2</t1><t2>update </t2><t3>3</t3>
will be transformed to <s1>7.2 update 3</s1>.

4) Entity detection. To identify entities such as complete
version information or software names, the whole snippet se-
quence of the summary is analyzed. Major software versions
can be identified precisely. After the combination step, the
whole software version entity holds the characteristic feature
vector. Thus, an identification of software versions can be
easily determined. The related software name of a software
version is always mentioned beforehand. This is why an-
other extraction definition can be used for software names:
Because the vulnerability description is written in English
language, only proper nouns and the first word of the sen-
tence are written with capital initial letters. We then assume
that the related software name is a previous snippet in the
same sentences as the version, if the snippet is starting with
a capital letter and is not located at the start of the sentence.
For an example see Listing 3.

Cross -site scripting (XSS) vulnerability in <name>
Managemoney Suite</name> before <version >7.4</
version >.

Listing 3: Extractor annotations of a software
version and name

Through previous manual inspection, we determined that re-
lated software names and versions are in close distance from
one another. For that reason, we apply a maximum token
limit of six tokens between a software name and version.

5) Entity refinement. We next need to refine the entity
value for software versions. This is done by analyzing the
snippet’s context. We are interested in the first affected, last
affected and fixed versions. For each of these specifications,
keyword-based features like the following can be used:

• Keywords for first affected versions: e.g. after
(e.g. in Software X after 11.5 update 2)

• Keywords for last affected versions: e.g. and earlier
(e.g. in Software X 11.5 update 2 and earlier)

• Keyword for fixed versions : before
(e.g. in Software X before 11.5 update 2)

6) Range generation. In the previous step we identified
single version numbers, but not ranges. Hence, in this step
we generate ranges from the collected data. To identify an
affected software range, related software versions must be
grouped together and sorted. We use the following proce-
dure to identify affected software ranges (i.e. the first and
last affected version):

a) All mentioned software versions of a CVE entry are
inserted in sorted lists, which contain software versions
of the same software name.

Figure 2: Schematic overview of the proposed data gathering process

b) The shortest9 software version in this list is now de-
fined as software branch root.

c) Potential sub versions of this software branch root will
be searched and associated.

d) All related versions of a software branch root are de-
fined as a software range.

Steps (b) to (d) are repeated until all software versions are
associated to a software range.

7) CPE mapping. The results from step 6 are then mapped
to the resolution of CPE identifiers in the <vulnerable-

software-list> of the entry by calculating the Jaro-Winkler
distance [6] to the identified software names.

5. EVALUATION
In order to verify the quality of the proposed approach, we

manually annotated a set of 300 randomly chosen CVE en-
tries based on annotation guidelines. Afterwards, the anno-
tated entries were compared with the output of our language
processing algorithm. The annotated dataset contains 686
(start: 274, end: 270, fixed: 142) tags. Using this dataset
as gold standard, the algorithm shows to have an average
F1-score of 0.70 (precision: 0.71, recall.: 0.69). The best
results (F1: 0.79, prec.: 0.84, rec.:0.75) were obtained for
the fix-tag. Examining the automatically extracted results,
it can be observed that the most common error cause is a
non-standardized usage of CPE-identifiers. In particular,
for sub-version information (e.g. as beta versions or release
numberings) a large variety is used, which does not adhere
to the CPE-ID naming conventions. Often, the approach
identifies the version information correctly, builds a CPE-ID
which adheres to the naming conventions but its structure is
not similar to the structure used in the existing CVE entries.

6. PUBLISHED DATASET
The complete dataset, its schema and the code for our

approach can be downloaded from our GitHub repository
at: https://github.com/stg-tud/cveenhance.

Applying the approach on the 70,716 CVE entries cur-
rently available in the NVD10 results in additional informa-
tion for 80.78% of the entries, fix information for 28.01%,
vulnerability interval start information for 56.13% and end
information for 57.80%. Examining the gold standard re-
vealed that for 12% of the entries, the available description
does not contain the targeted information making an extrac-
tion of that information impossible (e.g. when a vulnerabil-
ity has not been fixed yet).

7. RELATED WORK
Proposals for extensions of the NVD and the CVE for au-

tomated security management of the software engineering
process has been the focus of various work. A clustering-
based approach for categorization of vulnerabilities where

9A short software version is one, which is near to the software
version tree root.

10Data from 17-05-2015

only the category titles have to be added manually is pre-
sented by Venter et al. [3]. Incorporating information from
the Common Weakness Enumeration and other standards,
the Ontology for Vulnerability Management (OVM) was pro-
posed and populated with CVE entries [4].

The usage of CVE data for security management has been
leveraged by Wang et al. [5] who propose a software security
metric based on the CVE data. In particular, the vulnerabil-
ity scores introduced in the Common Vulnerability Scoring
System (CVSS) [2] are used.

8. CONCLUSION
In this paper, we present an approach to enhance the Na-

tional Vulnerability Database with the version ranges of each
vulnerable software component together with the version
numbers in which the vulnerabilities are fixed. We extract
this information through analyzing the textual descriptions
in the NVD CVE entries. Such information is useful for root
cause analysis of vulnerabilities as well as for automated
software version recommendation.

Our approach has its limitations in cases where the sum-
mary of the entry does not contain the required information
or when the versioning scheme does not follow common rules.

In future work, we aim to integrate additional external
information in order to improve the overall coverage. Fur-
thermore, the usage of the obtained data for vulnerability
evolution studies will be evaluated.

Acknowledgment
This work was supported by the BMBF within EC SPRIDE,
by the BMBF within the Software Campus initiative
(01IS12054) and by the Hessian LOEWE excellence initia-
tive within CASED.

9. REFERENCES
[1] D. W. Baker, S. M. Christey, W. H. Hill, and D. E.

Mann. The Development of a Common Enumeration of
Vulnerabilities and Exposures. In Recent Advances in
Intrusion Detection, volume 7, page 9, 1999.

[2] P. Mell, K. Scarfone, and S. Romanosky. Common
Vulnerability Scoring System. IEEE Security Privacy,
4(6):85–89, Nov. 2006.

[3] H. S. Venter, J. H. P. Eloff, and Y. L. Li. Standardising
Vulnerability Categories. Computers & Security, 2008.

[4] J. A. Wang and M. Guo. OVM: An Ontology for
Vulnerability Management. In Proceedings of the 5th
Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information
Intelligence Challenges and Strategies, CSIIRW ’09.

[5] J. A. Wang, H. Wang, M. Guo, and M. Xia. Security
Metrics for Software Systems. In Proceedings of the
47th Annual Southeast Regional Conference, 2009.

[6] W. E. Winkler. The state of record linkage and current
research problems. In Statistical Research Division, US
Census Bureau. Citeseer, 1999.

https://github.com/stg-tud/cveenhance

	Introduction
	Data Usage
	Software Development
	Vulnerability Cause Analysis

	Data Schema
	Data Gathering
	Evaluation
	Published Dataset
	Related Work
	Conclusion
	References

