
DGMF: Fast Generation of Comparable, Updatable
Dependency Graphs for Software Repositories

Tobias Litzenberger
TU Dortmund

Dortmund, Germany
tobias.litzenberger@tu-dortmund.de

Johannes Düsing
TU Dortmund

Dortmund, Germany
johannes.duesing@tu-dortmund.de

Ben Hermann
TU Dortmund

Dortmund, Germany
ben.hermann@cs.tu-dortmund.de

Abstract—Dependency graphs for software repositories have
been utilized in a variety of different research contexts. However,
to this date there is no unified data model for such graphs, often
prompting researchers to implement domain-specific methodolo-
gies from scratch. This greatly hinders comparability and makes
it hard to incorporate existing tooling into new contexts. With this
work we propose DGMF, a framework for mining dependency
graphs via repository-specific, user-defined adapters. DGMF is
designed to be fast, to require little repository-specific code, and
to produce graphs that are comparable even across different
repositories. We present our design and implementation, as well
as three predefined adapters and an evaluation.

Index Terms—dependency graphs, repository mining, maven,
npm, python

I. INTRODUCTION

Reusing software packages from public repositories is an
essential part of modern software development processes [1].
Since packages are interconnected via dependencies, the ex-
plicit inclusion of a single artifact may transitively include an
arbitrary amount of additional packages. All of these packages
may become outdated, will receive bug fixes, or be vulnerable
to exploits. This imposes an additional layer of complexity on
software development processes, where developers now have
to understand and monitor both direct and transitive project de-
pendencies. Studies have identified that this imposition results
in new threats to software security [2], maintainability [3], and
build stability [4].

In order to address those issues, previous work investigated
the propagation of vulnerabilities [2] and bugs [5] inside
software repositories via Dependency Graphs. Such graphs
have also been used to investigate large-scale software evolu-
tion [6]–[8] and to build tools for program understanding [9],
[10].

While for all of these publications researchers construct
some form of a dependency graph, there is no common method
for collecting and aggregating the necessary data. In fact,
we observe that even when publications address the same
programming language and repository [2], [8] the implemen-
tations, as well as resulting graph data models and overall
performance differ greatly. This makes it hard to incorporate
existing tools into new contexts and hinders comparative
studies, especially involving multiple repositories.

With this work, we improve on the current state-of-the-
art regarding dependency graph construction. We propose the

Dependency Graph Mining Framework (DGMF), a unified
framework for implementing data collection and graph build-
ing for dependency graphs of arbitrary repositories. We enable
fast generation of comparable, updatable dependency graphs
only requiring a limited amount of repository-specific code
(adapters). We contribute:

• A unified graph data model defining the common prop-
erties of software artifacts from arbitrary repositories,

• an extendable implementation of the DGMF using a
Neo4j graph database backend,

• and repository adapter implementations for Maven Cen-
tral, NPM, PyPi and Nuget.

We made our implementations available on GitHub [11] and
Zenodo [12].

II. STATE-OF-THE-ART

Large- or small-scale dependency graphs have been exten-
sively studied in software engineering research.

Benelallam et al. present a tool called Maven-Miner to
accumulate and resolve dependency information for software
artifacts on Maven Central [8]. The Maven-Miner’s data-model
is specifically tailored to the structure of Maven Central,
and does not generalize to other repositories. While they do
not provide concrete numbers, the authors describe executing
their tool as ”a time-consuming process”, which needs to be
repeated in full every time a new graph is required.

Düsing and Hermann use dependency graphs to investigate
the propagation of vulnerabilities in different software repos-
itories [2]. They implemented a tool that processes artifacts
from Maven Central, the NPM Registry and NuGet.org, storing
the results in a database. For this, they propose a data model
that applies to those three repositories. Running the miner for
all repositories took a total of 70 days. The authors point out
that their graphs need to be regenerated from scratch in order
to obtain up-to-date data.

Decan et al. argue that due to technical and structural differ-
ences, a generalization of empirical findings for one repository
to another is difficult [13]. The authors derive their claim after
investigating CRAN, PyPi and NPM, finding major differences
in the size of their packages, number of dependencies and
depth of dependency-relations. The authors do not discuss
how they aggregated and processed dependency data for their
three repositories. They report that ”very few studies have



compared different software ecosystems”, and conclude that
”further studies spanning and comparing multiple ecosystems
are required”.

Generating the dependency graph of PyPi was also subject
of a 2019 publication by Bommarito and Bommarito [7]. The
authors query the HTTP API at https://pypi.org for
artifact and dependency information, which is then processed
and stored in a Postgres SQL database. Their data model is
specific to the PyPi repository and does not generalize to other
ecosystems.

Other research gathers information on artifact dependencies
without building explicit graph representations: Wittern et
al. analyze the JavaScript ecosystem by downloading NPM
metadata files (package.json) [14]. Bavota et al. [15]
investigate the dependencies between Apache’s Java projects
using the Markos Code Analyzer [16].

We observe a number of limitations to state-of-the-art de-
pendency graph miners. First, we see that many researchers de-
sign data models and implement miners from scratch for their
respective research domain. As a result, many implementations
for different repositories with incompatible data models exist,
making it hard for other researchers to find suitable tooling
for a given problem. Furthermore, since existing data models
are designed for specific problem instances, results can hardly
be compared across different repositories.

Another limitation is the performance of existing miner
implementations. Authors report execution times of up to 70
days (for three repositories) [2], while others do not evaluate
their miner’s performance at all [7], [13]. To the best of our
knowledge, no current miner implementations are capable of
incrementally updating existing graphs. This implies that long
execution times have to be accepted whenever an up-to-date
graph is required.

III. DESIGN

To address the limitations observed in state-of-the-art de-
pendency graph miners we propose the Dependency Graph
Mining Framework (DGMF). DGMF is capable of generating
dependency graphs for any repository via repository-specific
adapters. While processing, it transforms dependency data to
a unified, repository-independent data model. Therefore, the
resulting graphs can be used for comparative studies across
different repositories. DGMF provides configurable perfor-
mance based on the precision required and resources available.
Finally, to avoid expensive re-computations, our framework
allows incremental updates for existing dependency graphs.

A. Data Model

For DGMF, we introduce a repository-independent data
model for representing dependency graphs. This is done for
two reasons: It enables comparative studies across ecosystems
(as suggested by Decan et al. [13]) and eliminates the need
for re-designing data models from scratch every time a new
repository is analyzed.

Our data model is designed to be an abstraction of software
repositories in general. As shown in Figure 1, it is comprised

Dependency
+ targetPackage: String
+ versionRange: String
+ customAttributes: Map

Artifact
+ identifier: String
+ versionNumber: String
+ customAttributes: Map

Package
+ identifier: String
+ name: String
+ repository: String
+ customAttributes: Map

target1 0..n

dependencies 0..n1releases 1..n1

Fig. 1. Classes of the unified data model

of three object classes that represent different entities of
software repositories. The role of each entity is defined as
follows:

1) A Package object represents a particular software library.
It is uniquely identified by its name and repository
identifier.

2) A single release of a software package is represented
by an Artifact. Its unique identifier is composed of the
respective package identifier and a release version. An
artifact may hold several Dependency objects.

3) A Dependency represents an artifact’s dependence on
another artifact from the same repository. These objects
hold the unique identifier of their respective Target
Package, as well as a repository-specific textual repre-
sentation of the range of versions that are addressed via
the dependency. We refer to the origin of dependencies
as Source Artifact.

a) Adapters: DGMF is composed of two kinds of com-
ponents. General-purpose Framework Components encapsulate
all functionality related to inputs, the application lifecycle
and storage. Repository-specific Adapters are responsible for
enumerating package names and transforming data into the
internal data model. This architecture allows DGMF to work
with any repository, as long as there exists a mapping to our
internal data model. Therefore, the complexity of developing
dependency graph miners for new repositories is reduced.

b) Configurable Performance: In Section II, we observed
long execution times for existing dependency graph miners.
For DGMF, we address this issue in two ways.

First, we incorporate several general performance opti-
mizations into our design. In particular, we use placeholder
packages when storing dependencies to packages that have
not yet been processed. Furthermore, to increase throughput
we use a parallel streaming architecture for enumerating,
transforming and storing packages.

Second, we provide configuration options for adapting the
runtime behavior to a specific use-case. Users may specify
the number of parallel transformation streams according to
the resources available. Also, DGMF provides different levels
of granularity for storing dependencies, which have a large
impact on the overall performance. Depending on their re-
quirements, users may choose one of the following levels:

• Package-to-Package This level defines dependencies as
a relation between two package nodes. If there is at least
one artifact of package A that depends on package B,



than A depends on B. This level is the least complex to
generate, but also the least precise.

• Artifact-to-Package Here, dependencies are defined be-
tween source artifacts and target packages. Resulting
dependency edges are annotated with the version range
of the dependency. This level preserves all information
available, but does not explicitly compute the set of Target
Artifacts referenced by the version ranges.

• Artifact-to-Artifact This level is the most expensive to
compute, but also the most precise. Dependencies are
represented as edges from one artifact to another. Based
on the Artifact-to-Package level, for every dependency
we compute the set of target artifacts (resulting from
the dependency’s version range) and create corresponding
edges in the database.
c) Incremental Updates: Current approaches do not build

dependency graphs incrementally, but required rebuilding the
entire graph from scratch [2], [8]. One reason for this is that
the resolution of so-called floating version ranges is a time-
dependent process, so the addition of new artifacts to a given
package may invalidate the resolution of a dependency. Since
a full rebuild is a very expensive operation, for DGMF we
implemented an algorithm to enable incremental updates. For
an existing database, only new artifacts are processed and
inserted, while dependency version ranges are re-evaluated
where necessary to ensure correctness.

IV. IMPLEMENTATION

We implement DGMF using Java, and provide open access
to our implementation via GitHub.

A. Project Structure

As described in Section III, DGMF consists of Framework
Components and repository-specific Adapters. An overview
is provided in Figure 2, where adapter-components are high-
lighted in orange.

A MinerScheduler controls the application lifecycle. At
first, it enumerates all package identifiers for a given repository
using a repository-specific IdGenerator implementation.
Then, package metadata is downloaded and converted to our
internal data model via a corresponding Miner implementa-
tion. Finally, the DatabaseController stores all package
data in a graph database by converting it into an explicit graph
representation. As shown in Figure 2, these transformation and
storage operations are executed in parallel.

After the MinerScheduler is finished, the graph
database contains a dependency graph with either Package-
to-Package to Artifact-to-Package edges. If the Artifact-to-
Artifact precision level was selected, the LinkageParser
is invoked to convert all Artifact-to-Package edges
into the desired precision using a repository-specific
VersionRangeResolver implementation.

B. Existing Adapters

Our initial implementation of DGMF contains adapters for
the NPM Registry, the Python Package Index, and Maven Cen-

tral. For each repository, we implemented an IdGenerator
and a Miner using respective public HTTP APIs123.

Furthermore, we implement a VersionRangeResolver
for each repository according to the respective version range
syntax.

C. Technologies

We haven chosen existing technologies and frameworks
for the implementation of DGMF. Most notably we used
Akka Streams [17] to build a parallel processing pipeline,
Neo4j [18] as our graph database backend, and Docker [19]
for deployment.

V. EVALUATION

We claim that DGMF (for a given use-case) achieves better
performance than state-of-the art implementations (Claim 1),
can be adopted for other repositories (Claim 2), and that our
data model is well-suited for comparative ecosystem studies
(Claim 3). Also, we enable incremental updates that further
reduce execution times (Claim 4). We evaluate those claims in
the following. All analyses were performed between December
15, 2022 and January 20, 2023.

A. General Metrics

In order to evaluate Claim 1, we generated all three depen-
dency graphs, which took about 25.85 hours on a server with
Intel Xeon E5-2650 quad-core CPU and 34 GB of RAM. As
shown in Table I, the resulting graphs combined contain about
3,598,058 packages and 43,529,670 artifacts, with 27,860,704
dependencies. We observe an improvement in performance
compared to other miner implementations [2] (Claim 1).

TABLE I
GENERAL METRICS OF REPOSITORIES

Repo Packages Artifacts Dependencies Average Time
NPM 2,678,549 29,662,399 23,778,374 1,247.11 min
PyPi 410,559 4,023,847 922,481 44.09 min
Maven 508,950 9,843,424 3,159,849 259.74 min∑

3,598,058 43,529,670 27,860,704 1,550.94 min

To test the extensibility of the framework, we tasked a
Java developer to implement the functionality needed to mine
packages for the Nuget4 repository using only our documen-
tation on GitHub. Since tasks such as database management,
parallelization, and data modeling are already solved by the
framework, implementing and testing the necessary repository
adapter took less than four hours. This indicates that DGMF
can be adopted for other repositories (Claim 2) with reasonable
implementation effort.

1https://replicate.npmjs.com
2https://pypi.org/simple/
3https://maven.apache.org/repository/central-index.html
4https://www.nuget.org



ConsoleApplication

MinerScheduler

LinkageParserDatabaseController

«optional»
parseLinkage()

Processing Pipeline

Graphdatabase

createPackageNode()minePackage()
parsePackage()generateIds()

«Interface»
Miner

«Interface»
IdGenerator

triggers coordinates
PackageString

Fig. 2. Architecture, Components and Dataflows of DGMF

B. Dependency Graph Analysis

To evaluate Claim 3, we conduct an exemplary comparative
study on the transitive dependency distributions for NPM,
PyPi, and Maven. Figure 3 shows the distribution of transitive
outgoing dependency edges is shown with a maximum depth
of 6. As an example conclusion, our data shows that more
than 75% of the packages in Maven depend on more than 5
other packages, compared to the 33% of PyPi packages. The
data was obtained from the Neo4j database with one query
per repository.

0 1 2 3 4 5 ≥ 6
0%

20%

40%

60%

80%

A
m

ou
nt

of
pa

ck
ag

es Maven
PyPi
NPM

Fig. 3. Distribution of Transitive Outgoing Dependency Counts per Package

In addition, we evaluate the performance of different levels
of dependency resolution (see section III-A0b). Our results
are presented in Table II and clearly show that more accurate
resolution leads to longer generation times. The different levels
of resolution for dependencies can be used for different use
cases of the analysis framework.

TABLE II
DEPENDENCY COUNT AND PERFORMANCE PER PRECISION LEVEL

Repo Package-to-Package Artifact-to-Package Artifact-to-Artifact
NPM 23,778,374 20.8h 456,536,545 43.0h 343,382,828 243.9h
PyPi 922,481 0.7h 25,358,350 2.6h 1,684,941,345 135.7h
Maven 3,159,849 4.3h 66,230,554 9.1h 82,916,746 24.5h∑

27,860,704 25.8h 548,125,449 54.7h 2,111,240,919 404.1h

C. Incremental Updates

To validate that incremental updates indeed yield perfor-
mance benefits (Claim 4), we conduct the following ex-
periment: For each repository, we first generate a partial
dependency graph containing 65% of all packages. We then
update the partial graph to contain all packages using DGMF’s

incremental updates. We use the Artifact-to-Package level for
this experiment. Table III reports the resulting execution times,
as well as the update speedup compared to a full rebuild.

TABLE III
DURATION OF INCREMENTAL UPDATES AND SPEEDUPS

Repo Full Build Partial Build Full Update Speedup
NPM 43.0h 25.25h 23.80h 1.81
PyPi 2.6h 1.54h 1.22h 2.13
Maven 9.1h 6.45h 2.84h 3.20

We observe that for all three repositories incremental up-
dates are faster than full rebuilds, with speedups ranging from
1.81 to 3.20. For this setting, updates yield net savings in
execution time of up to 19.2 hours (NPM).

D. Limitations
Our adapter implementations exhibit some technical limita-

tions. We observe that in some cases the repository APIs return
no responses for package ids. We call these instances Request
Errors. The number of Request Errors varied from 0 (PyPi) to
397,852 (NPM). They occur due to packages that do not exist
anymore, either because they have been revoked or because
of outdated indices. As the respective package data does not
exist, these errors do not invalidate the resulting graphs.

We further note that our PyPi adapter implementation
is limited to the detection of dependencies specified via
requires-dist [20]. We chose to not process depen-
dencies specified in setup.py files, as this would require
downloading and unzipping archives for every single artifact,
thus dramatically reducing throughput. If desired, the corre-
sponding PyPi adapter can be extended accordingly.

VI. CONCLUSION

In this paper we presented DGMF, a framework for effi-
ciently generating comparable dependency graphs for software
repositories. DGMF improves on the current state-of-the-art by
introducing a unified data model for comparative ecosystem
studies, by improving overall performance, and by being open
for extensions in order to cover new repositories. We provide
adapter implementations for Maven Central, the NPM Registry
and the Python Package Index, and demonstrate that additional
adapters can be added with minimal effort. Finally, we evaluate
the performance of DGMF, and provide insights into the
resulting graphs. Our implementations are freely available on
GitHub [11] and Zenodo [12].



REFERENCES

[1] J. L. Barros-Justo, F. Pinciroli, S. Matalonga, and N. Martı́nez-
Araujo, “What software reuse benefits have been transferred to the
industry? a systematic mapping study,” Information and Software
Technology, vol. 103, pp. 1–21, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584918301083

[2] J. Düsing and B. Hermann, “Analyzing the direct and transitive impact
of vulnerabilities onto different artifact repositories,” Digital Threats,
jun 2021, just Accepted. [Online]. Available: https://doi.org/10.1145/
3472811

[3] N. B. Tàrrega, M. Zivkovic, A. Oprescu, and S. PCS, “Measuring the
impact of library dependency on maintenance.” in SATToSE, 2020.

[4] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repair-
ing dependency-related build breakage,” in 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 106–117.

[5] W. Ma, L. Chen, X. Zhang, Y. Feng, Z. Xu, Z. Chen, Y. Zhou, and B. Xu,
“Impact analysis of cross-project bugs on software ecosystems,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), 2020, pp. 100–111.

[6] V. Musco, M. Monperrus, and P. Preux, “A generative model of
software dependency graphs to better understand software evolution,”
2014. [Online]. Available: https://arxiv.org/abs/1410.7921

[7] E. Bommarito and M. Bommarito, “An empirical analysis of the
python package index (pypi),” 2019. [Online]. Available: https:
//arxiv.org/abs/1907.11073

[8] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais,
“The maven dependency graph: A temporal graph-based representation
of maven central,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), 2019, pp. 344–348.

[9] S. Venkatanarayanan, J. Dietrich, C. Anslow, and P. Lam, “Vizapi:
Visualizing interactions between java libraries and clients,” 2022.

[10] R. Falke, R. Klein, R. Koschke, and J. Quante, “The dominance tree in
visualizing software dependencies,” in 3rd IEEE International Workshop
on Visualizing Software for Understanding and Analysis, 2005, pp. 1–6.

[11] T. Litzenberger, J. Düsing, and B. Hermann, “Dgmf on github,”
https://github.com/sse-labs/dgmf, Jan 2023.

[12] T. Litzenberger, J. Duesing, and B. Hermann, “Dependency graph
mining framework v1.0.0,” https://doi.org/10.5281/zenodo.7561081, Jan
2023.

[13] A. Decan, T. Mens, and M. Claes, “On the topology of package
dependency networks: A comparison of three programming language
ecosystems,” in Proccedings of the 10th European Conference on
Software Architecture Workshops, ser. ECSAW ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2993412.3003382

[14] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
351–361. [Online]. Available: https://doi.org/10.1145/2901739.2901743

[15] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “The
evolution of project inter-dependencies in a software ecosystem: The
case of apache,” in 2013 IEEE International Conference on Software
Maintenance, 2013, pp. 280–289.

[16] G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta,
D. Galletti, R. Galoppini, T. F. Gordon, P. Kedziora, I. Lener, F. Torelli,
R. Pratola, J. Pukacki, Y. Rebahi, and S. G. Villalonga, “The market for
open source: An intelligent virtual open source marketplace,” in 2014
Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), 2014, pp.
399–402.

[17] Lightbend, Inc., “Akka documentation - streams,” https://doc.akka.io/
docs/akka/current/stream/index.html, accessed: 11-16-2022.

[18] Neo4j, Inc., “Neo4j graph database,” https://neo4j.com/product/
neo4j-graph-database/, accessed: 11-16-2022.

[19] Docker Inc., “Docker,” https://www.docker.com/why-docker, accessed:
11-16-2022.

[20] Python Software Foundation, “Python core metadata specifications
- requires-dist,” https://packaging.python.org/en/latest/specifications/
core-metadata/#requires-dist-multiple-use, accessed: 11-14-2022.


