IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 1

MODGUARD: Identifying Integrity &
Confidentiality Violations in Java Modules

Andreas Dann, Ben Hermann, and Eric Bodden

Abstract—With version 9, Java has been given the new module system Jigsaw. Major goals were to simplify maintainability of the JDK
and improve its security by encapsulating modules’ internal types. While the module system successfully limits the visibility of internal
types, it does not prevent sensitive data from escaping. Since the module system reasons about types only, objects are allowed to
escape even if that module declares the type as internal. Finding such unintended escapes is important, as they may violate a
module’s integrity and confidentiality, but is a complex task as it requires one to reason about pointers and type hierarchy.

We thus present MODGUARD, a novel static analysis based on Doop which complements the Java module system with an analysis to
automatically identify instances that escape their declaring module. Along with MODGUARD we contribute a complete formal definition
of a module’s entrypoints, i.e., the method implementations that a module actually allows other modules to directly invoke. We further
make available a novel micro-benchmark suite MIC9BENCH to show the effectiveness but also current shortcomings of MODGUARD,

and to enable comparative studies in the future.

Finally, we describe a case study that we conducted using Apache Tomcat, which shows that a migration of applications towards
Jigsaw modules does not prevent sensitive instances from escaping, yet also shows that MODGUARD is an effective aid in identifying

integrity and confidentiality violations of sensitive instances.

Index Terms—Java 9,Jigsaw, Module Systems, Security, Static Escape Analysis, Doop, Soot.

1 INTRODUCTION

ITH the release of version 9, the Java programming
Wplatform has introduced the module system Jigsaw,
whose “primary goals are to make implementations of
the Platform more easily scalable [..], improve security
and maintainability” [1] by encapsulating internal, security-
sensitive types [2]. With Java modules, developers decide
which packages and classes will be exposed, and which
will remain internal [2]. The Java platform has already
been partitioned using the module system. For instance,
java.lang.Class is exported publicly, whereas security-
sensitive classes such as jdk.internal.misc.Unsafe!
are only available to their declaring module.

The issue we wish to address with this work is that,
although the module system encapsulates internal types
successfully, it does not prevent the unintentional escaping
of security-sensitive data to the outside, e.g., secret keys.
As we show in this work, reasoning about data flows
between modules and which classes, methods, and fields
a module actually exposes is complex: While the module
system prevents internal types from being visible outside of
their declaring modules, instances of internal types can still
escape a module, and all methods or fields of its exported
supertypes can be invoked, accessed, or modified. Although
escaping instances cannot be downcasted to the internal
type, this behavior makes it complex for developers to
reason about (unintended) data leaks or manipulation, as it
requires reasoning about pointers and types, which is hard
to discern in manual reviews.

e The authors are with the Chair for Software Engineering, Heinz Nixdorf
Institute, Paderborn University, Germany.
E-mail: (First Name).(Last Name)@uni-paderborn.de

Manuscript received July, 2018;
1. The replacement for sun.misc.Unsafe in earlier versions.

As an example, consider CVE-2017-5648, a vulnera-
bility in Apache Tomcat. The vulnerable part of the code
fails to properly protect a critical object before passing it
to untrusted code. This allows untrusted code to perform
security-critical operations on the object, which in turn
would lead to data leaks and privilege elevation.

CVE-2017-5648 was contained in a version of Tomcat,
which did not yet use Java modules. In this work, we show
that the module system misses analyses to identify escaping
sensitive objects and data leaks. In particular, we show that
Java’s module system encapsulation of internal types alone
is insufficient to identify or avoid such vulnerabilities, as
it reasons about declared types only, completely neglecting
data flows resulting from pointers and virtual dispatch. To
detect such vulnerabilities, developers would have to man-
ually determine all potential interactions between modules,
including exported types and instances of internal classes
that might escape a module or not. This, however, involves
complex reasoning about the module’s implementation.

To complement the Java module system with means
to identify and analyze unintended data flows, we de-
signed and implemented MODGUARD, a novel static analy-
sis which automatically identifies instances, fields, or meth-
ods that might escape their declaring module. Thereby,
MODGUARD enables developers to leverage the module
system security-wise by identifying unintended data flows
that the modularized application should prevent. We have
implemented MODGUARD on top of Doop [3] and made
it publicly available together with the results of all experi-
ments described in this paper.?

To assure the soundiness [4] of our approach, we derived
and present here a novel formal specification of what we

2. https:/ / github.com/secure-software-engineering /modguard

https://github.com/secure-software-engineering/modguard

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 2

call module entrypoints, i.e., the set of method implementa-
tions a module defines, and which are invokable by other
modules, either explicitly because their type is exported, or
implicitly due to an exported supertype. Our specification—
another major contribution of this paper—exactly captures
the conditions under which classes, fields, and methods of
a module become accessible.

As we are among the first to develop a static anal-
ysis devoted to Java modules, there exists no previous
benchmark allowing systematic studies on the subject.
To remedy this for future research, we make available
MIC9BENCH,? a novel open-source micro-benchmark for
comparing analyses’ effectiveness for computing module
entrypoints, and identifying integrity and confidentiality
violations in Java modules. Experiments with MIC9BENCH
show that MODGUARD identifies data flows causing in-
tegrity and confidentiality violations in Java modules ef-
fectively, but could benefit from future improvements for
handling Java’s dynamic language support (i.e. java.-
lang.invoke.MethodHandle and VarHandle).

To demonstrate the efficiency of our analysis on a real-
world application, we conduct a case study on Apache
Tomcat 8.5.21. Due to the novelty of Java’s module system
code using modules is still scarce, and there exist no multi-
module projects on Maven Central. Thus, we ourselves
migrated Tomcat to the module system, following the ap-
proach presented by Corwin et al. [5], and migrated each
jar file to a separate module. Our case study shows that
this naive migration fails to mitigate confidentiality and
integrity violations. Developers instead must restructure the
architecture to confine sensitive data properly utilizing the
encapsulation the module system provides.

In our case study, we identified violations in 12 out of
26 Tomcat modules. Even if we retain only those modules’
export declarations that are required to compile Tomcat,
violations remain in 6 modules. While the most effective
reduction of violations occurs in the module catalina.ha,
its violations are reduced by 35% only. To successfully
confine sensitive data within a module, developers must in-
troduce modules with care, also considering type hierarchy
and pointers. In particular, the option to invoke methods
of supertypes on instances of internal types makes it hard
for developers to reason which entities can be accessed or
manipulated. Our case study shows that MODGUARD sup-
ports such reasoning by pointing out unwanted interactions,
and thus effectively supports migrations to Java’s module
system, as well as refactorings of existing modules.

In summary, this paper makes the following contribu-
tions:

e a formal specification of module entrypoints, which
defines which classes, fields, and methods of a module
will be accessible (Section 3),

 anew static analysis, MODGUARD, to identify integrity
and confidentiality violations in Java modules (Sec-
tion 4),

 a benchmark, MIC9Bench, for static analyses targeting
Java modules (Section 5),

« a case study on the application Tomcat (Section 5).

3. https:/ / github.com/secure-software-engineering /mic9bench

2 JAVA MODULE SYSTEM DESIGN AND EXAMPLE

Java 9 introduces modules to the platform as first-class
constructs [6]. A module encapsulates its internal API,
preventing access to internal types during compile-time
and run-time [2]. In the following, we provide a basic
introduction to the design of Java’s module system and the
resulting consequences for the visibility of types, methods,
and fields. To motivate our confidentiality and integrity
analysis for Java modules, we present Tomcat’s vulnerability
CVE-2017-5648 which illustrates that the module system
guarantees the encapsulation of internal types but fails to
prevent violations due to unintended data leaks or manipu-
lation of escaping instances.

2.1 Design of the Module System

Java modules assemble packages, classes, native code, and
further resources, like simple JAR files. Yet, the new mod-
ules contain a static module descriptor which specifies the
module’s unique name, its dependency on other modules,
its exported packages, and a definition of re-exported de-
pendencies. The module descriptor is processed by the Java
compiler as well as the Java Virtual Machine (JVM), causing
them to check and prevent access to the internal types of a
module both at compile- and run-time. The dependencies
between modules, as specified in the module descriptors,
form an acyclic module graph. This module graph is used
to resolve references between classes, replacing the previous
class-loading based on the linear classpath.

— java.desktop — | javaxml —
exports javax.swing flfz==e-eece-e-- F> exports java.xml
. <
exports java.awt == QT """ "1 D com.sun
* ® 1 '?\
R ceccccses .
— java.datatransfer = @ java.base —
exports e—| exports java.lang
java.awt.datatransfer jdk.internal

Figure 1: Example Module Graph. Blue Arrows: Module
Dependencies; Dashed Arrows: Visibility Relations.

Up to Java 8, every public class was visible to any other
class on the classpath loaded by the same ClassLoader.
In Java 9, a class contained in a module may only access
the types of another module if there exists a corresponding
dependency relation in the module graph [7]. A class con-
tained in module A is allowed to access types of another
module B only if A depends on B.

Figure 1 shows, as an example, the subset of the module
graph of the Java Development Kit (JDK) module java-
.desktop. The module java.desktop depends on the
modules java.datatransfer, java.xml, which com-
prises the exported package java.xml and the internal
package com. sun, and transitively on java.base. The root
of each module graph is the module java.base, which
contains essential Java classes. Due to the dependency rela-
tions, in Figure 1, the module java.desktop can access
only exported classes of modules it depends on. Conse-
quently, the module java.datatransfer cannot access
any package in the module java.xml.

In particular, a module can only access types of modules
it depends on whose package are exported and that are

https://github.com/secure-software-engineering/mic9bench

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 3

declared public. For instance in Figure 1, only the types of

the exported package java.xml are visible to the module

java.desktop, whereas types declared in the internal

packages com. sun are invisible. Thus, all types that are nei-

ther explicitly declared public nor declared in an exported

package are invisible outside of their declaring module.
But crucially modules can invoke not only methods on

object instances of exported types. Classes of a module A

can directly invoke all methods that are declared public

(static or not), protected and static, or implement a method

from an exported supertype on object instances of a depen-

dent module B, disregarding whether the types are declared

in exported packages or not. The only condition is that

classes of A must obtain access to an object instance to invoke

the method on.

1module my.mod{ exports api; requires java.base; }

2

3package api;

spublic class KeyProvider {

5 public static Key getKey () {

6 return new SecretKey ();}}
7

s abstract class Key {

9 private byte[] key;

10 protected Key (byte[] key) {this.key = key;}

11 public getKey () {return key;} }

12

13 package internal;

1upublic class SecretKey extends Key {

15 private static byte[] keyMaterial = {1,2,3,4};

16 public SecretKey () { super (keyMaterial); }}

Listing 1 Violation. Green: Exported types and methods.
Yellow: Internal types. Red: Sensitive field keyMaterial.

Listing 1 shows a simplified example in which the ac-
cess to an internal object instance results in a confiden-
tiality violation. The module my.mod exports its package
api, making the types KeyProvider and Key visible to
other modules, but keeping the type SecretKey internal.
The module’s api creates an instance of the internal type
SecretKey, returning it as the exported type Key. Al-
though SecretKey is internal and stores its key material
in the private field keyMaterial, classes outside the mod-
ule my .mod can access the stored key using the inherited
method Key . getKey (). Since the Java module system con-
fines types only, invoking methods of exported supertypes
is permitted. The actual problem, in this example, is the
leak of the internal keyMaterial. For detecting such leaks,
developers need to reason about complex pointers and type
hierarchy. Even for this simple example a developer needs to
reason that the constructor of the internal class SecretKey
hands the internal, sensitive keyMaterial to the construc-
tor of its exported superclass Key, which assigns it to the
field key, which can be retrieved by the exported, inherited
method Key.getKey (). The inherited method Secret-
Key.getKey () is, in our terminology, an entrypoint of the
declaring module (in addition to the directly exported en-
trypoints KeyProvider.getKey () and Key.getKey ()).
Obviously, this manual reasoning becomes virtually impos-
sible in real-world scenarios with more complex pointers
and types, as the Tomcat example in subsection 2.2 shows.

Excursion: Open modules By default, the JVM denies
run-time access to internal types via reflection, or Java’'s

dynamic-language API [2], [7]. However, modules can be
declared as open. This grants compile-time access to ex-
ported packages only, but run-time access throughout [6].
Likewise, packages can be declared as open, thereby grant-
ing reflective access to all types. For the remainder of this
paper, we assume that neither modules nor packages are
opened since they do not, as the name implies, encapsulate
internal types.

2.2 Motivating Example - Tomcat CVE-2017-5648

To motivate our approach with a real-world example, we
describe a vulnerability in Tomcat’s component catalina
reported as CVE-2017-5648. The vulnerability enables *
“an application [running with a SecurityManager], to
retain a reference to the request object and thereby access
and/or modify information associated with another web
application.”

1class Request implements HttpServletRequest{

2 public HttpServletRequest getRequest () {

3 return new RequestFacade (this); } }

4

sclass RequestFacade implements HttpServletRequest

6

7class FormAuthenticator{

8

9— 1if (context.fireRequestInitEvent (request)) {

10+ if (context.fireRequestInitEvent (request.
getRequest ())) {

1 disp.forward(request.getRequest (), response);

12— context.fireRequestDestroyEvent (request) ;

13+ context.fireRequestDestroyEvent (request.
getRequest ()); }}}

Listing 2 Fix for CVE-2017-5648 - Tomcat rev. 1785776

This vulnerability shows that programming mistakes
involving the unintentional leak of sensitive objects occur in
real-world applications and that they may have a significant
impact on an application’s security.

The corresponding fix for the vulnerability is shown in
Listing 2. Lines 9, 12 show the vulnerable code, whereas
lines 10, 13 show the fix.

In the vulnerable lines 9, 12 any Request received by
the FormAuthenticator was dispatched directly to the
context object representing the web application, which
one must assume to be attacker-controlled. Since the dis-
patched Request object grants access to sensitive methods,
any web application could abuse it.

To fix this vulnerability, the authors expose a Request-
Facade to the web application, instead of the original
Request object. The RequestFacade wraps the Request
object, denying any access to its security-critical methods.

CVE-2017-5648 was contained in a version of Tomcat
that did not yet use Java modules. Yet, while the module
system can encapsulate the internal Request object, its
encapsulation is too weak to prevent such vulnerabilities
since it reasons about types only: Both classes Request
and RequestFacade implement the interface Servlet-—
Request. Crucially, this interface has to be exported to be
usable by web applications. Thus, any code outside of the
component catalina may invoke any method on any ob-
ject of type RequestFacade, but also on Request, as long

4. https:/ /cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
5648

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5648
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5648

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 4

as the method is defined in the interface ServletRequest.
Unfortunately, ServletRequest defines a number of such
methods, e.g., getParameter, getLocale, etc.,, and be-
cause ServletRequest is exported, attackers can invoke
those methods on the unprotected Request object even if
the type Request is declared as internal.

The lesson learned is thus that vulnerabilities of this kind
cannot be remedied solely by relying on the encapsulation
of types, but also require reasoning about escaping instances
and data flows between modules.

The vulnerability shows that the module system needs
to be complemented with analyses that detect if security-
critical objects like Request escape. This is generally non-
trivial, however, as an analysis must reason about point-
ers while being aware of a module’s entrypoints and
boundaries. In the example, the context object repre-
sents the untrusted web application that runs on top of
Tomcat, and outside of the component catalina. Cru-
cially, the analysis has to recognize that values passed
to context.fireRequestInitEvent (..) in line 9 and
fireRequestDestroyEvent (..) in line 12 resemble a
confidentiality violation: because they are passed to a
context object residing outside the module.

An analysis has to take into consideration that there are
two internal subtypes of the exported interface Servlet—
Request: one which is security-sensitive (Request) and
one which is safe to be used outside the module (Request—
Facade). As the information which of these two classes is
sensitive is domain specific, an analysis has to be provided
with a list of sensitive entities.

3 DEFINITION OF MODULE ENTRYPOINTS

Implementing a static analysis on individual modules is
challenging, as the analysis must be conducted on open
code much alike call-graph construction for libraries [8]:
a module can be linked to any other, and the analysis
must foresee all ways in which those other modules can
invoke that module’s functionality. MODGUARD constructs
an entrypoint model that precisely defines those possible
invocations.

3.1

As the example in Listing 1 shows, invocations crossing
module boundaries are not restricted to explicitly exported
types. Instead, external code may interact with many meth-
ods the module defines. We call those methods “entry-
points”. Entrypoints comprise two kinds of methods: explic-
itly and implicitly reachable methods. Initially, external code
can only invoke explicitly reachable methods. They are meth-
ods whose declaring type is exported. In Listing 1, the meth-
ods KeyProvider.getKey () and Key.getKey () are ex-
plicitly reachable, as their types Key and KeyProvider are
declared in the exported package api. The use of explicitly
reachable methods may grant access to further methods as
well, which we call implicitly reachable. Implicitly reachable
methods are either declared by internal types, inherit, imple-
ment, or override explicitly reachable methods of supertypes.

In the example, SecretKey.getKey () is an implicitly
reachable method: its declaring type SecretKey is kept

Explicitly vs. Implicitly Reachable Entrypoints

internal, yet the method can be directly invoked on the
object that is returned by KeyProvider.getKey (). Note
that implicit reachability is different from the usual notion
of indirect reachability, i.e., the ability to invoke a method
indirectly through a chain of calls.

3.2 Design Choices

The union of all explicitly and all implicitly reachable methods
constitutes an upper bound of a module’s entrypoints. This
upper bound is naive since it ignores whether objects of
internal types, which declare the implicit method, actually
escape the module or not.

To gain a tighter bound, MODGUARD identifies which
instances of internal types actually escape a module utilizing
points-to analysis.

Internal types may escape through different paths: they
can be returned from an accessible method, can be refer-
enced by a (static-) field of another escaping object, can
be assigned to the field (of a field ...) of a parameter, etc.
Computing all escaping objects results in scalability issues
since a points-to analysis has to be carried out for all these
potential paths before the actual client analysis starts. Hence,
MODGUARD computes the entrypoints for a subset of the
escaping paths only, and postpones the identification of
further escapes to client analyses.

MODGUARD’s initial entrypoint set is based on the fol-
lowing design decisions. First, the entrypoints are sound
w.r.t. explicitly reachable methods. Second, the entrypoint
computation should be scalable, and thus the entrypoint
model may only contain a subset of the implicitly reachable
methods.

To be sound w.r.t. the explicit methods, our entrypoint
model computes all explicit methods of the exported types
and supertypes. To be scalable, the entrypoint model only
computes implicit methods of internal types that escape
directly through an exported type. The initial entrypoint
model computes the implicit methods of escaping types
only that are returned from an accessible method or that
are referenced by (static-) fields of exported classes. Addi-
tionally, the entrypoint model also includes the exported
supertypes’ methods of escaping instances.

Limiting the entrypoint set to implicit methods of objects
that are (directly) returned from the module bounds the set
to a reasonable size. Without these constraints, the size of the
initial entrypoint set would explode quickly, for instance,
consider that the class Object is a supertype of every
class, and thus all its public methods would be entrypoints,
too. Consequently, all types returned by these entrypoints
would be also an entrypoint, e.g., the method getClass (),
which returns an instance of type Class, which in turn
defines further public methods would be entrypoints also,
and so on. Thus, MODGUARD postpones the computation
of entrypoints not directly declared in the module to client
analyses, which may extend the initial set based on their
objective.

3.3 Entrypoint Model: logic-based specification

We realized our entrypoint definition in a model that is
a logic-based specification in the syntax of declarative,
Datalog-based analysis rules extending Doop [3], [9], shown

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 5

in Figure 2. In the following, we introduce our entrypoint
model in detail to make our description of the previous
sections precise and showcase its generality.

Datalog rules establish facts about derived relations
(the head) from the conjunction of previously established
facts (the body), separated by the left arrow symbol (+).
Some of the relations in Figure 2 are functions, written as
RELATION[DOMVAR] = VAL . This notation is equivalent to
RELATION(DOMVAR, VAL) but required by Datalog, which
throws an error if a computation yields multiple values for
the same domain variable [10].

Domain:

T set of class types

D set of module descriptors

M set of method identifier

H set of heap abstractions (e.g., allocation sites)
I set of fields

V set of program variables

HC set of heap contexts

Input Relations:

METHOD:DECLARINGTYPE[method: M| = type: T
METHOD:MODIFER(modifier:String, method: M)
RETURNVAR(var: V', method: M)
CLASSMODIFIER(modifier:String, class: T')

SUPERTYPEOF (supertype: T, type: T')

OVERRIDESMETHOD (method: M , type: T', supertype: T')
IMPLEMENTSINTERFACE(method: M, type: T', supertype: T')

MODULEDECLTYPE(module:D, type: T')
MODULEEXPORTS(fromModule: D, package:String, toModule: D)
EXPORTEDTYPE(type: T')

MODULEFORANALYSIS(module:D)

VARPOINTSTO(var: V, ctz:C, heap:H , hetx: HC')
FLDPOINTSTO(base: H, baseCtz:HC, fld:F', heap:H , ctz: HC')

Output Relations:
EXPLICITMETHOD class: T, method: M)
IMPLICITMETHOD(class: T, method: M)
ENTRYPOINT(method: M)
CLASSHASPOSSIBLEENTRYPOINT(class: T')

Figure 2: Entrypoint model: domain, input, and output
relations. Doop’s [3], [9] default rules are gray.

Domain To incorporate Java modules into Doop, we
added module descriptors to the domain, which represents
a module, its name, its (re-exported) dependencies, its ex-
ported packages, and internal packages.

Input relations The input relations of our entrypoint
model, shown in Figure 2, are logically grouped: rela-
tions representing Doop’s intermediate representation, Java
modules, and points-to information. The built-in relations
represent the program as Datalog facts [10]: RETURNVAR
represents a method’s return variable, METHOD:DECLARING-
TYPE represents its declaring type, METHOD:MODIFIER
and CLASSMODIFIER represent the modifier of a method
or class, and SUPERTYPEOF represents all supertypes of a
type. The new input relations IMPLEMENTSINTERFACE and
OVERRIDESMETHOD represent every method of a type that
implements or overrides a method of an exported supertype.

The input relations MODULEDECLTYPE, MODULE-
EXPORTS, and EXPORTEDTYPE are module specific:
MODULEDECLTYPE represents in which unique module a
type is declared, MODULEEXPORTS specifies which module
fromModule exports which package to which other module

toModule, and EXPORTEDTYPE represents every publicly
exported type. The input relation MODULEFORANALYSIS
represents the module for which the entrypoints should be
computed, as a Java project typically consists of a set of
modules.

VARPOINTSTO and FLDPOINTSTO encode points-to in-
formation: they link a return variable var or a field fld to an
heap object heap.

Output Relations The output relations ENTRYPOINT
and CLASSHASPOSSIBLEENTRYPOINT encode the com-
puted entrypoint model. The relations EXPLICITMETHOD
and IMPLICITMETHOD represent the explicitly and implicitly
reachable methods.

Entrypoint Logic The entrypoint model definition is
shown in Figure 3. The main rules CLASSHASPOSSIBLE-
ENTRYPOINT and ENTRYPOINT (in duplicate) state that the
set of entrypoints constitutes every implicitly and explicitly
reachable method.

The rule EXPLICITMETHOD states that a method is ex-
plicitly reachable if it has the modifiers public or static
protected, and its declaring class is exported.

The rule IMPLICITMETHOD represents all implicit meth-
ods; overriding, implementing, or inheriting a supertype’s
method. To express implicit methods in Datalog, the rule
IMPLICITMETHOD is defined twice; once for overridden
methods, and once for inherited methods. Note that Datalog
executes multiple definitions of the same rule independently
and merges the results.

The first definition states that every method implement-
ing or overriding a method of an exported supertype con-
stitutes an implicitly reachable method. In correspondence
with our design choices, we constrain this set by the rules
ENTRYPOINT and METHODRETURNTYPE; requiring that an
object of type class actually escapes by a return of an previ-
ously established entrypoint.

The second definition of rule IMPLICITMETHOD states
that every method declared in an exported supertype con-
stitutes an implicitly reachable method, too. Similar to
the first definition, the rule constraints this to methods
of types retType that actually escape through a previously
established entrypoint, encoded by the METHODRETURN-
STYPE(ENTRYPOINT, RETTYPE). Moreover, we limit implicit
methods to those whose declaring types retType are defined
in the module itself (MODULEDECLTYPE(_,RETTYPE), or
whose declaring types are directly returned from another
entrypoint of the module, encoded by the conjunction
METHOD:DECLARINGTYPE and MODULEDECLTYPE.

Since both rules EXPLICITMETHOD and IMPLICIT-
METHOD recursively refer to the main rule ENTRYPOINT,
they are repeatedly applied to newly discovered entry-
points, until no further entrypoints are found. Thus, both
rules compute entrypoints that become transitively reach-
able, e.g., if an internal type’s method grants access to
further internal types.

The rule METHODRETURNSTYPE determines the possi-
ble concrete run-time types of objects flowing into method
returns. The rule states that a method grants access to a type
if the return variable var points-to a heap object heap of the
type. Our implementation comprises a similar rule comput-
ing concrete type information also for instance and static

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 6

fields of escaping objects. The rule is defined analogously,
and thus omitted for brevity.

CLASSHASPOSSIBLEENTRYPOINT class),
ENTRYPOINT(method)
EXPLICITMETHOD(class, method).

CLASSHASPOSSIBLEENTRYPOINT (class),
ENTRYPOINT(method) +
IMPLICITMETHOD(class, method).

EXPLICITMETHOD(class, method) <
METHOD:DECLARINGTYPE][method] = class,
CLASSMODIFIER(”public”, class),
MODULEFORANALYSIS(module),
MODULEDECLTYPE(module, class),
EXPORTEDTYPE(class),
(METHOD:MODIFIER(”public”, method);
(METHOD:MODIFIER(”protected”, method),
METHOD:MODIFIER(“static”, method))).

IMPLICITMETHOD(class, method) <+
METHOD:DECLARINGTYPE][method] = class,
MODULEFORANALYSIS(module),
MODULEDECLTYPE(module, class),
METHOD:MODIFIER(”public”, method),
(OVERRIDESMETHOD (method, class, supertype);
IMPLEMENTSINTERFACE(method, class, supertype)),
EXPORTEDTYPE(supertype),

ENTRYPOINT (entrypoint),
METHODRETURNSTYPE(entrypoint, class).

IMPLICITMETHOD (supertype, method) <
SUPERTYPEOF (supertype, ret Type),
EXPORTEDTYPE(supertype),
METHOD:DECLARINGTYPE[method] = supertype,
METHOD:MODIFIER(”public”, method),
CLASSMODIFIER(“public”, supertype),
ENTRYPOINT(entrypoint),
MODULEFORANALYSIS(module),
(MODULEDECLTYPE(module, ret Type);
(METHOD:DECLARINGTYPE|[entrypoint]| = classOfEntryPoint,
MODULEDECLTYPE(module, classOfEntryPoint)),
METHODRETURNSTYPE(entrypoint, ret Type).

METHODRETURNSTYPE(method, type) <
RETURNVAR(var, method),
VARPOINTSTO(_, heap, _, var),
VALUE:TYPE[heap] = type.

Figure 3: Datalog rules for module entrypoints.

As we have provided a formal definition of entrypoints,
we will describe next how we use Doop to turn this defini-
tion into an actual static analysis tool. This tool MODGUARD
goes beyond merely computing entrypoints: it also com-
putes all potential data flows between modules. Therefore,
MODGUARD checks for of all user-defined sensitive classes,
methods, and fields if they may escape the module through
invocations of its entrypoints, or may be manipulated by
such calls.

4 DESIGN AND IMPLEMENTATION OF MODGUARD

The examples presented in Section 2 show a clear moti-
vation for an analysis to detect escaping objects that leak
or manipulate sensitive data. For this purpose, we created
MODGUARD, an analysis to detect such escaping objects
in Java modules. To detect escaping objects, MODGUARD

computes module entrypoints and points-to information
using the static analysis frameworks Doop [3] and Soot [11].

Each usage scenario of MODGUARD’s client analysis
might consider a different set of classes, methods, and
fields as sensitive, represented by the input relations SEN-
SITIVEFIELD, SENSITIVEMETHOD, and SENSITIVECLASS in
Figure 5. We expect this information to be provided as user
input either as our annotation @Critical or as a text file.

We have observed that sensitive information is often
stored using primitive types, or arrays of those. For instance,
secret keys are stored in byte arrays, while passwords
are stored in char arrays. To track such primitive-typed
data in addition to regular pointers, we use P/Taint [12]
an extension to Doop that augments its points-to analysis
with additional rules for a context-sensitive, flow-insensitive
propagation of primitive-typed data.

1. Initialization

2. Entrypoint 3. Client Analysis

Build Module Compute Identify
Graph Entrypoints Violations
Parse class Files to Perform
Jimple P/Taint Analysis

Figure 4: Overview of MODGUARD. Gray: Steps in Soot.
White: Steps in Doop.

Figure 4 gives an overview of MODGUARD consisting of
three steps, which we introduce in the following.

4.1

To compute the module entrypoints one first needs to con-
struct the module graph from the information contained
in the module descriptors. We adapted Soot to parse the
descriptor of the module under analyses and its transi-
tive dependencies using the information from requires,
exports, and opens declarations.

MODGUARD then uses Soot to transform the bytecode
from all modules into the Jimple intermediate representa-
tion [11], on which Doop operates in later stages of the
analysis. Furthermore, MODGUARD marks primitive-typed
sensitive entities as tainted for Doop’s P/Taint analysis [12].

Module Analysis Initialization

4.2 Precise Modeling of Module Entrypoints

Modules do not have a single entrypoint (e.g.,, a main
method). Modules instead compromise many entrypoints —
the explicitly and implicitly — reachable methods, as described
in Section 3. We implemented the rules for our module’s en-
trypoint model in Doop, directly based on the Datalog rules
shown in Section 3. To model the module’s entrypoints pre-
cisely, MODGUARD’s confidentiality and integrity analysis
completes the initial entrypoint set. Therefore, MODGUARD
identifies objects that escape transitively through static or in-
stance fields of escaping objects, arguments passed into the
module, or arguments passed to callback methods outside
the module. To detect such escapes, MODGUARD generates
mock-objects representing the arguments of entrypoints’
methods, which it simulates to be passed to the corre-
sponding entrypoints. Since MODGUARD does not require
client code, such mock-objects simulate the allocation of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 7

entrypoints” arguments by client code for Doop’s points-to
analysis.

Figure 5 shows the input relations and queries of MOD-
GUARD’s client analysis to identify whether sensitive fields
can be accessed or changed from outside the module under
analyzes, the queries for sensitive methods and classes are
defined analogously.

To identify data flows that lead to integrity and confiden-
tiality violations, MODGUARD checks if the points-to sets
of sensitive entities and the points-to sets of reachable and
escaping entities intersect. If the two points-to sets intersect,
a sensitive entity escapes the module, marking a confiden-
tiality violation, or an object that has been passed into the
module has been assigned to a sensitive entity, marking an
integrity violation. In Figure 5, the input relations represent
the points-to sets of such escaping objects and the sensitive
entities. The input relation SENSITIVEFIELD represents the
fields that should not be leaked or manipulated from outside
of the module. The points-to set of these sensitive fields is
represented by the relation SENSITIVEFIELDPOINTSTO.

The remaining input relations represent the points-to
sets of further escaping objects. VISIBLEFIELDPOINTSTO
represents the points to set of all fields that are either
public or protected and reside in classes the module ex-
ports. The relation RETURNVARPOINTSTO represents the
points-to set of the return variables of all reachable implicit
and explicit methods. Similarly, the relations MOCKOBJECT-
POINTSTO and ARGUMENTOFCALLBACKPOINTSTO repre-
sent the points-to set of receiver mock-objects on which
an entrypoint method is invoked, of mock-objects that are
passed as arguments into the module, and of arguments that
are passed to callback methods outside the module.

4.3 Module Integrity & Confidentiality Analysis

To identify whether the values of sensitive fields can leak
or be manipulated, MODGUARD intersects the points-to
set of sensitive fields and escaping objects in the query
CHECKVIOLATIONFIELD in Figure 5. Each definition of the
query CHECKVIOLATIONFIELD intersects the points-to set
of the sensitive fields SENSITIVEFIELDPOINTSTO with one
of the input relations that represents the points-to set of the
escaping objects. If a query results in a non-empty intersec-
tion, MODGUARD reports a violation of the corresponding
sensitive field.

For the example in Listing 1, MODGUARD’s confiden-
tiality and integrity analysis works as follows. First, MOD-
GUARD computes the entrypoint model for the module.
As defined by the rules in Section 3 the entrypoint model
contains the explicit method KeyProvider.getKey (). To
represent the return value of this method, MODGUARD
creates a mock-object in Doop of the internal type Secret-
Key representing the returned object new SecrectKey ().
Second, MODGUARD’s entrypoint definition detects, uti-
lizing the entrypoint rule IMPLICITMETHOD, that the re-
turned object’s type SecretKey constitutes the implicit
entrypoint getKey (), declared in its public exported super-
type Key. Third, MODGUARD binds the created mock-object
new SecrectKey () to the this parameter of the implicit
method getKey () and creates an additional mock-object
representing the returned key key, which aliases with the

Client Analysis Input Relations:
SENSITIVEFIELD(field: F')
SENSITIVEMETHOD (identifier: M)
SENSITIVECLASS(class: T')

SENSITIVEFIELDPOINTSTO(f : field, heap:H, ctz: HC')
VISIBLEFIELDPOINTSTO(f : field, heap:H, ctz: HC')
RETURNVARPOINTSTO(var : : V, type: T, heap: H, ctz: HC')
MOCKOBJECTPOINTSTO(type: T, heap:H)
ARGUMENTOFCALLBACKPOINTSTO(type: T', heap:H)
CHECKVIOLATIONFIELD(field, field Value) <
SENSITIVEFIELDPOINTSTO(field, field Value, ctz),
VISIBLEFIELDPOINTSTO(field, field Value, ctz).

CHECKVIOLATIONFIELD(field, field Value) <
SENSITIVEFIELDPOINTSTO(field, field Value, ctz),
RETURNVARPOINTSTO(var, _, field Value, ctx).

CHECKVIOLATIONFIELD(field, field Value) <+
SENSITIVEFIELDPOINTSTO(field, field Value, _),
MOCKOBJECTPOINTSTO(_, field Value).

CHECKVIOLATIONFIELD(field, field Value) <
SENSITIVEFIELDPOINTSTO(field, field Value, _),
ARGUMENTOFCALLBACKPOINTSTO(_, field Value).

Figure 5: MODGUARD Client Analysis: Input Relations &
Queries for Checking Field Violations.

sensitive field keyMaterial. Finally, MODGUARD checks
if the points-to sets of the private field keyMaterial and
the points-to set of the mock-objects intersect, utilizing the
rule CHECKVIOLATIONFIELD. Since MODGUARD bound the
this parameter of the method getKey () to the returned
mock-object new SecrectKey (), the points-to set of the
returned object and sensitive field intersect, and MOD-
GUARD successfully detects the confidentiality violation.

4.4 Limitations of MODGUARD

MODGUARD shares some inherent limitations with other
static analyses. For instance, MODGUARD does not identify
violations resulting from using MethodHandles.Lookup,
MethodHandle, or VarHandle from Java’s dynamic-
language API. Consequently, MODGUARD currently under-
approximates w.r.t. Java’s dynamic-language API leading to
false negatives. For dealing with reflection we use Doop’s
extensions to resolve reflective calls and compute points-to
information in conjunction with our rules and queries [13].

Additionally, MODGUARD fails to detect violations oc-
curring in native code, resulting in false negatives. Detecting
violations in arbitrary native methods requires analyses for
languages such as C and C++, or for native binaries, which
is out of scope. However, for commonly used native method
like System.arraycopy (), MODGUARD’s analysis can be
supplemented with hand-crafted summaries (Datalog facts)
as proposed by Salcianu and Rinard [14] that specify the
impact of these native methods on data flows between
modules.

5 EVALUATION

Our evaluation addresses the following research questions:
RQ1 How effectively can MODGUARD identify confiden-
tiality and integrity violations in Java modules?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 8

RQ2 Are integrity and confidentiality violations introduced
during the migration of real-world applications and can
MODGUARD properly identify these violations?

5.1 RAQ1: Confidentiality and Integrity Violations in
Java Modules — Micro MIC9Bench

While there exist benchmark suites for detecting Java vul-
nerabilities [15] or evaluating points-to analyses [16], there
currently exists no benchmark specific to Java modules.
Existing benchmarks suites cannot be used to assess the
effectiveness of Java module analyses, as they comprise
no module declarations, nor any ground truth for such
analyses.

Specifically for Java 9 module analyses, we de-
veloped the test suite MIC9BENCH (module, integrity,
confidentiality for Java 9). The test suite contains 22 small
hand-crafted modules each violating either integrity or con-
fidentiality.

Table 1 presents the results of MODGUARD applied to
MIC9BENCH. The results show that MODGUARD success-
fully detects whether sensitive entities referenced by fields
can be accessed or modified from external code. Moreover,
MODGUARD correctly detects if external code can gain
access to sensitive methods, i.e., if packages are erroneously
exported.

Table 1: MIC9Bench Test Results

Test Scenario Result
Integrity /Confidentiality primitive field v
Accessible Integrity/Confidentiality non-primitive field 4
Field Integrity /Confidentiality field array, collection v
Getter/Setter for field v
Invokable Access to explicit method v
Method Access to implicit interface/ abstract method v
Entity added to parameter array, collection 4
Parameter Static method returns internal field v
Callback Entity/Class referencing Entity as argument v
Exception Declared/Undeclared exception v
Reflection Referenced by varHandle/ MethodHandle X
& Invoke Access to privileged MethodHandles.Lookug X
API Return field via reflection v
Side-Effect ~ Pass entity to native code X

vtrue positives, Xfalse negatives; no false positives observed; Intel i7
2.60GHz, @ per module: Runtime 22.4 min,RAM 3.4 GB (incl. JDK); excl.
Doop Reflection: 7.4 min, 3.1 GB

MODGUARD identifies whether sensitive entities are
disclosed through parameters which are passed into the
module, i.e., if sensitive entities are assigned to a parameter
or added to a collection, which is accessible to external code.
Similarly, MODGUARD successfully detects if sensitive enti-
ties leak as arguments of callback methods or exceptions.

To detects if an exposed collection discloses sensitive
entities MODGUARD uses Doop’s partially 1-object-sensitive
points-to analysis context-insensitive++.

MODGUARD does not detect if a module exposes ref-
erences to internal types, methods, and fields in the form
of Method—, VarHandle, or MethodHandles . Lookup ob-
jects. Since the access checks for «Handle instances are
made at creation-time rather than at run-time, external

code can invoke any operation freely on such escaping
instances circumventing access checks. Additionally, MOD-
GUARD does not detect violations in side-effects occurring
in native code. As discussed in subsection 4.4, MODGUARD
currently has only limited support for these features.

MODGUARD effectively finds confidentiality and
integrity violations of sensitive entities, unless Java’s
dynamic-language API is used.

5.2 RQ2: Confidentiality and Integrity Violations in
Real-World Application

To assess MODGUARD on a real-world application, we ap-
plied it to two different modularizations of Apache Tomcat
8.5.21. Since code using modules is still scarce in October
2018 as Java’s modularity feature has only been introduced
recently, we ourselves modularized Tomcat to Java modules
to assess MODGUARD. In fact, we searched Maven Cen-
tral for artifacts containing a module-info.class, which
yield 215 different artifacts. Only 83 of the 215 artifacts actu-
ally include a module-info file in their source-jar, all other
artifacts accidentally include a module-info.class due to
rebundling a beta version of the library org.s1£47. These
83 artifacts export all packages publicly and do not contain
any internal packages, which would render the analysis
pointless. Since no client code using these artifacts exists,
we were unable to construct reasonable a modularization
for these artifacts, simply because we do not know which
of the packages should be internal. In contrast, Tomcat
consists of multiple modules that depend on each other,
and thus we know, at least, which packages each module
must export to compile Tomcat successfully — allowing us
to create reasonable modules.

To assess MODGUARD on Tomcat, we first modularize
Tomcat using the default JDK tool jdeps, resulting in a
naive modularization, which exports all packages publicly.
Thereby, we check how many sensitive entities Tomcat ex-
poses using Java’s default visibility restrictions. Second, we
modularize Tomcat by restricting the naive modularization,
retaining exactly those export statements which Tomcat
requires to compile, resulting in a strict modularization.

MODGUARD identifies integrity and confidentiality vio-
lations of sensitive entities in both modularizations despite
the reduced exports in the strict version. Comparing the
number of integrity and confidentiality violations in Table 2
shows that the module system’s encapsulation of internal
types can limit violations to a small extent only. To reduce
violations effectively, data flow analyses must complement
the module system identifying data leaks or manipulations.

5.2.1 Setup - Tomcat Modularization

To modularize Tomcat, we chose to follow the approach
presented by Corwin et al. [5]. Thereby, we created for each
of Tomcat’s 26 JAR files a separate module, maintaining the
original grouping of classes into logical units.

Figure 6 shows an excerpt of the resulting module
graph. In the strict modularization: the modules on top
of the graph (in white) catalina.ant, catalina.-
storeconfig, jasper, tomcat.dbcp, and tomcat.-
websocket do not export any packages, the modules

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 9

(marked with a dashed line) tomcat.api, tomcat.-
jni, tomcat.juli, and tomcat.util.scan remain un-
changed, and the exports of the remaining modules (marked
in gray) are reduced to the minimum necessary to compile.
Note that the modules on the top of the module graph
do not export any packages since Tomcat does not contain
any client code using them. Thus, these modules cannot
be invoked externally - they are dead code. While this
modularization is more strict than a regular one, we do not
run the risks of exposing internal types unnecessarily.

catalina.storecfg

[\
J catalina.hal catalina.ant |
W AAVALN

catalina| tomcat.socket

| catalina.tribesl tomcat.coyote

L LN NS
omcat.jni:_ tomcat.scan |

jasper

Vi 4

A AWAVS
tomcat.util | tomcat.api
—_ f /

! tomcat.jzﬂ_i]

Figure 6: Tomcat 8.5.21’s Module Graph. In the strict ver-
sion, white modules do not export any packages. Dashed
modules do not differ in the naive and strict version.

To determine sensitive methods in Tomcat, which MOD-
GUARD expects as user input, we used the machine-learning
framework SuSi [17], an existing and established tool to
determine sources and sinks in Java and Android binaries.
We trained SuSi on methods of the JDK 9 that throw
SecurityExceptions, e.g., methods accessing or modi-
fying CLASSLOADERS or the filesystem. The features im-
plemented by these methods are guarded by permissions
checks, triggered by calls to Java’s SecurityManager,
which investigate the call stack to check whether all calling
classes possess the required permissions. These methods are
considered security-sensitive, and their set of calling classes
is restricted. Thus, we use these methods as the training set
for SuSi - which should identify similar security-sensitive
methods in Tomcat to which the access should be restricted,
too.

Using this training set, SuSi reported 3,300 sensitive
methods in 12 Tomcat modules. We further included 90
classes and 25 fields as sensitive that are declared as in-
ternal in their JavaDoc comments. Note that access to these
sensitive entities does not necessarily imply the existence of
security vulnerabilities, yet it indicates privileged classes,
fields, and methods whose caller may be limited, similar
to I/O-methods in the JDK. Developers should investigate
these warnings and revise the design and implementation
such that these sensitive entities do not leak.

522

Table 2 shows that even with the strict modularization, Tom-
cat allows data flows resulting in integrity or confidentiality
violations for thousands of sensitive entities. Comparing the
naive and strict version shows that within the strict modu-
larization the number of violations of sensitive entities does

Integrity & Confidentiality Violations in Tomcat

not change or is only slightly reduced. Since modules cross-
reference types between each other the reported violations
of one module intersect with the reported violations of other
modules. For instance, method violations in an exported
supertype in one module are reported for all dependent
modules that declare escaping subtypes. Thus, removing
the export of such supertype also reduces the violations
in dependent modules. In fact, the majority of data flows
violating confidentiality occur due to sensitive types that
are declared in exported packages whose export cannot be
removed without compilation errors.

Table 2: Violations in Tomcat. Modules © declare no exports,
modules ® do not differ in the strict and naive version.

Tomcat Module #Violations strict / A naive version %urrr;
Methods Fields Classes (min.)
catalina 2556/ —236 8/—21 31/—17 11:13
catalina.ant® 0/- 0/- 0/—7 00:43
catalina.ha 1081/—391 3/—1 15/- 03:48
catalina.storeconfige 0/—-79 0/- 0/- 01:49
catalina.tribes 0/- 3/- 4/—1 01:13
jaspere 0/—6 0/- 0/- 01:30
tomcat.coyote 2020/—294 0/-3 20/—-14 01:25
tomcat.dbcpo 0/- 0/-3 0/- 00:44
tomcat.jni® 1/- 2/- 0/- 00:38
tomcat.util 78/- 0/- 1/- 00:39
tomcat.util.scan® 449 /- 0/- 0/- 00:44
tomcat.websocketo 0/- 0/- 0/—6 00:46

Table 2 shows that in the strict modularization, no vi-
olations occur in the 5 modules catalina.ant, cata-
lina.storeconfig, jasper, tomcat.dbcp, and tom-
cat .websocket, since they are at the top of the module
graph (cf. Figure 6) all their export statements are deleted,
and thus no data flows exist, which could leak sensitive
entities.

Conversely, the violations remain unchanged in the
3 modules tomcat.api, tomcat.jni, and tomcat.-
util.scan since their export statements remain un-
changed. For the module tomcat.util the violations re-
main unchanged since the removed package exports do not
contain any sensitive entity.

The strict modularization influences violations in the
modules catalina, catalina.ha, catalina.tribes
and tomcat.coyote only, excluding modules whose ex-
ports are removed completely or are unchanged.

In the module catalina, 18 export statements out of 30
are removed. However, the encapsulation of internal types
only reduces violations by a small extent. Instead, violations
still occur in packages whose exports are removed. For
instance, the removed export of package org.apache.-
catalina.webresources contains 140 internal, sensitive
methods. 32 of these methods are still accessible in this
strict modularization since WebResource, which declares
the sensitive methods, is contained in the package org.-
apache.catalina whose exports cannot be removed
without compilation errors. The module catalina.ha
does not benefit much from the stricter encapsulation of
internal types either; 70% of its sensitive methods are still
leaked and can be invoked from the outside.

An instance of a data flow violating confidentiality of the
sensitive methods of class StandardSession in module

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 10

4
I ey catalina v

<catalina> catalina

-@' Manager
(] createEmp tySession():
' A Session
cecoeea
D @
]
0

<catalina.session>
StandardSession

epr| External Code

I'™ Tcatalinaha™ ~ | o [T c?tz?é}l_a.ﬁa_ - =

o | <catalina.ha.session> |
. DeltaManager
| createEmp tySession(): |

catalina.ha |
| <catalina.ha.session> |
DeltaSession |

| <catalina.ha.tcp> |
= «_SimpleTcpCluster

| getMngTemplate(): |

DeltaManager _ _|

— — — Session — —

Figure 7: Example Violation in Module catalina.ha.
Types marked with a dashed line are internal.

catalina is depicted in Figure 7. The violation occurs
in the strict version, as follows: First, external code ac-
quires an instance of DeltaManager, returned from the
public method getManagerTemplate (). Second, external
code invokes the implicit method createEmptySession
on the acquired instance, which is overridden in Delta-
Manager from its exported supertype Manager. Third,
the method createEmptySession returns an instance
of DeltaSession to external code. Fourth, on the such
acquired instance of DeltaSession external code can in-
voke all overridden sensitive methods of the supertype
StandardSession (exported by module catalina). This
exposes the internal, sensitive methods of DeltaSession
in catalina.ha to external code.

Integrity and confidentiality violations are indeed
a problem when modularizing real-world applications.
MODGUARD identifies data flows leading to violations,
and thus, helps developers to assess how successfully a
module confines sensitive entities.

In result, Table 2 shows that neither the naive nor the
strict modularization of Tomcat effectively limits that sen-
sitive entities escape through complex (unintended) data
flows. While an automatic migration using jdeps is possi-
ble without major effort, the resulting modules do not bene-
fit from the module system security-wise. Although internal
types are encapsulated, modularizing w.r.t. forbidden data
flows can prevent data leaks, and thus results in a security
benefit. To limit violations, it is insufficient to simply limit
package exports. Even modules whose exports we were
able to be reduce (catalina.ha, catalina.tribes, and
tomcat.coyote), effectively confine a small subset of
sensitive entities only. Thus, applications must instead be
migrated with care to prevent data flows leading to integrity
and confidentiality violations. For this migration, develop-
ers should be supported by appropriate tools. Our case
study shows that MODGUARD can support the migration to
Java modules, as well as refactorings, by revealing integrity
or confidentiality violations.

6 RELATED WORK

As the Java module system has only been recently intro-
duced, existing work on modules focuses solely on OSGi or
on information-flow control in distributed systems.

Vulnerabilities in OSGi Bundles

Parrend and Frénot [18], [19] study vulnerability patterns
in the OSGi platform and OSGi bundles, e.g., modifying a
bundle’s private data through its API or shared variables.
To detect such vulnerability patterns, Parrend and Frénot
utilize points-to analyses in their following work [20], sim-
ilar to MODGUARD. However, their analysis does detect
escaping objects, but aims to detect if objects can be passed
from untrusted code into a trusted bundle, thereby risking
denial of service attacks when untrusted code is executed,
and thus solves a different issue. In the future, we will
incorporate their vulnerability patterns into our analysis
where applicable.

Geoffray et al. [21], [22] introduce [-JVM, a JVM to
isolate vulnerable or malicious OSGi bundles from each
other. I-JVM executes each bundle in a separate thread
containing a private copy of all static variables, strings,
and java.lang.Class objects, thereby achieving isola-
tion. Similarly, Gamma and Donsez [23] propose to load
untrusted OSGi bundles in separate sandboxes to achieve
fault isolation. Analogously, Huang et al. [24] introduce
an Advanced OSGi Security Layer to prevent malicious
bundles from performing security-sensitive operations, e.g.,
modifying files on disk, or probing the API of other bundles,
by inspecting the state of the JVM.

While the approaches isolate bundles, MODGUARD
helps to improve the encapsulation within modules them-
selves. Therefore, MODGUARD statically analyzes module’s
entrypoints to detect integrity or confidentiality violations.

Escape Analysis

Several approaches already have applied static analysis to
determine whether objects escape a dedicated code region,
e.g., if they become accessible outside of a method or a
thread, to improve memory allocation [25], [26], [27], e.g.,
allocating objects on the stack or removing synchronization.

Similar to our analysis, escape analyses usually rely on
points-to analyses but operate on a complete code base
rather than on standalone modules.

Two of the most related approaches are contributed by
Whaley et al. [27] and extended by Viven et al. [26]. They
present an abstract inter-procedural points-to & escape anal-
ysis based on so-called points-to escape graphs. In an escape
graph, nodes represent objects and edges represent refer-
ences between them. The analysis separates the code under
analysis into unanalyzed and analyzed regions and uses
the escape graph to record escape paths into unanalyzed
regions [26]. The presented approaches do not only cover
objects escaping methods but also (static) fields, parameters,
exceptions, and callbacks.

A state-of-the-art escape analysis is implemented in the
Watson Libraries for Analysis (WALA) [28] framework. The
algorithm respects fields, thread constructor parameters,
and all objects transitively reachable from fields of escaping
objects, but solely focuses on threads.

Current escape analyses check if objects escape methods
or threads but do not consider escapes in larger contexts like
modules. In addition, they analyze concrete implementa-
tions including callers, whereas our analysis, in the absence
of such callers, analyzes all potential usage scenarios of a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018 11

module. Finally, they ignore access restriction in the module
system, and thus would report violations of entities which
are actually inaccessible.

Information-Flow Control

To cope with unintended data flows several approaches [29],
[30], [31], [32], [33] control information-flow using run-time-
monitoring, static analysis, or language-based mechanisms.

Sabelfeld and Myers [30] state that visibility constraints
and access controls, like in the Java module system, are
insufficient to protect confidential data. Thus, they advocate
the introduction of security-type systems into programming
languages to enable the implementation of static security
analyses and to enforce information-flow policies.

Burias et al. [29] introduce the library Hybrid LIO for the
programming language Haskell to enforce information-flow
policies both statically and at run-time. The authors extend
Haskell’s type system to distinguish public and confidential
data. Based on the extended type system, the library Hybrid
LIO checks statically, and if required at run-time, if confi-
dential data flows into public objects or methods.

In contrast to these approaches, MODGUARD does not
introduce a security-type system for modules. Instead,
MODGUARD analyzes all potential interactions between
modules and checks if they leak or manipulate sensitive en-
tities. Nevertheless, the presented security-type systems are
more powerful as they enable to check for non-interference
and data flows in distributed systems, e.g., web server or
files.

Enck et al. [31] introduce TaintDroid a run-time monitor
for Android to limit data flow between Android apps.
TaintDroid instruments the Android VM and taints sensitive
information on the level of variables, methods, files, and
inter-application messages. TaintDroid traces the data flow
at run-time and reports violations whenever data flows into
a method, variable, or application with a lower confidential-
ity level.

Yip et al. [33] propose Resion a language run-time to
prevent data leaks in web applications. Resin allows devel-
opers to specify at application-level data flow assertions,
which are then enforced at run-time. Similarly, Giffin et
al. [32] present a novel web framework that allows the
specification of data flow policies for sensitive entities, and
enforces them at run-time. Instead, MODGUARD is a static
analysis focusing on single modules and cannot identify
violations in distributed systems but supports the design
of Java modules.

7 CONCLUSION

We have presented a novel static analysis to identify con-
fidentiality and integrity violations of sensitive entities in
Java modules. To model the possible usages of a module
precisely, we introduced a formal definition of module en-
trypoints respecting transitively accessible types and meth-
ods. This formal definition not just serves our own analysis
implementation but may also serve as a basis for future
static analyses in the context of Java’s module system, since
it specifies which methods or types of a module may become
accessible, thereby computing the set of methods that are
directly invokable on any given module.

A case study of integrity and confidentiality violations in
Tomcat 8.5.21 showed that using the default JDK tool jdeps
for migrating to Java 9 provides modules, without any
encapsulation. Yet, it shows that simply restricting modules
by limiting export statements, only has a small effect on
the number of violations. Even with a few exported types,
a significant number of sensitive entities can leak. Hence, if
one desires to also limit leakage or manipulation of sensitive
entities, one might be forced to refactor the application’s
type hierarchy or module boundaries.

Our static code-analysis MODGUARD can be helpful in
identifying problematic data flows leading to confidentiality
and integrity violations and can thus aid such refactorings.
Yet, our study also shows that the Java module system still
makes it hard for developers to reason about data flows
and potential interactions between modules. Although the
Java module system successfully hides internal types, there
exists no means to efficiently reason about or limit data
flow between modules. MODGUARD complements the Java
module system by analyzing the data flow between mod-
ules and pointing out unwanted and potentially security-
relevant data flows and interactions.

REFERENCES

[1] Oracle Corporation, “JEP 200:
https:/ /openjdk java.net/jeps/200.
/ /openjdk.java.net/jeps/200

[2] ——. (2015) Jep 260: Encapsulate most internal apis. http://
openjdk.java.net/jeps/260.

[3] Y. Smaragdakis and M. Bravenboer, “Using datalog for
fast and easy program analysis,” in Proceedings of the First
International Conference on Datalog Reloaded, ser. Datalog’10.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 245-251. [Online].
Available: http:/ /dx.doi.org/10.1007 /978-3-642-24206-9_14

[4] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhotdk, J. N.
Amaral, B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Moller,
and D. Vardoulakis, “In defense of soundiness: A manifesto,”
Communications of the ACM, vol. 58, no. 2, pp. 4446, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2644805

[5] J. Corwin, D. E Bacon, D. Grove, and C. Murthy, “MJ: a
rational module system for Java and its applications,” in OOPSLA
‘03 Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and applications,
vol. 38, no. 11. ACM, 2003, pp. 241-254. [Online]. Available:
http://doi.acm.org/10.1145/949343.9493

[6] Oracle Corporation, “The Java Language Specification Java SE
9 Edition,” Oracle Corporation, Tech. Rep., 2017. [Online].
Available: https:/ /docs.oracle.com/javase/specs/jls/se9/jls9.pdf

[7] ——. (2014) JEP 261: Module System. http://openjdk.java.net/
jeps/261.

[8] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini,
“Call graph construction for java libraries,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 474—486. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950312

[9] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective
analysis: Context-sensitivity, across the board,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ‘14. New York, NY,
USA: ACM, 2014, pp. 485-495. [Online]. Available: http:
//doi.acm.org/10.1145/2594291.2594320

[10] Y. Smaragdakis, M. Bravenboer, and O. Lhotdk, “Pick your
contexts well: Understanding object-sensitivity,” in Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ‘11. New
York, NY, USA: ACM, 2011, pp. 17-30. [Online]. Available:
http:/ /doi.acm.org/10.1145/1926385.1926390

The Modular JDK,”
[Online]. Available: https:

https://openjdk.java.net/jeps/200
https://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://doi.acm.org/10.1145/2644805
http://doi.acm.org/10.1145/949343.9493
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://doi.acm.org/10.1145/2950290.2950312
http://doi.acm.org/10.1145/2594291.2594320
http://doi.acm.org/10.1145/2594291.2594320
http://doi.acm.org/10.1145/1926385.1926390

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 42, JUNE 2018

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Lam, E. Bodden, O. Lhotak, L. Hendren, O. Lhotdk, and
L. Hendren, “The Soot framework for Java program analysis: a
retrospective,” in Cetus Users and Compiler Infrastructure Workshop
(CETUS 2011), no. 15, Galveston Island, TX, oct 2011, pp. 35-42.
N. Grech and Y. Smaragdakis, “P/taint: Unified points-to
and taint analysis,” Proc. ACM Program. Lang., vol. 1, no.
OOPSLA, pp. 102:1-102:28, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133926

Y. Smaragdakis, G. Balatsouras, G. Kastrinis, and M. Bravenboer,
“More Sound Static Handling of Java Reflection,” in Programming
Languages and Systems: 13th Asian Symposium, APLAS 2015, Pohang,
South Korea, November 30 - December 2, 2015, Proceedings, X. Feng
and S. Park, Eds. Cham: Springer International Publishing, 2015,
pp- 485-503. [Online]. Available: https://doi.org/10.1007 /978-3-
319-26529-2{_}26

A. Sédlcianu and M. Rinard, “Purity and Side Effect Analysis for
Java Programs.” Springer, Berlin, Heidelberg, 2005, pp. 199-215.
[Online]. Available: http://link.springer.com/10.1007 /978-3-540-
30579-8{_114

J. Whaley and M. Rinard, “Compositional pointer and escape
analysis for java programs,” in Proceedings of the 14th ACM
SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA '99. New York,
NY, USA: ACM, 1999, pp. 187-206. [Online]. Available:
http://doi.acm.org/10.1145/320384.320400

J. Spdth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang:
Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java,” in 30th European Conference on Object-Oriented Programming
(ECOOP 2016), ser. Leibniz International Proceedings in Infor-
matics (LIPIcs), S. Krishnamurthi and B. S. Lerner, Eds., vol. 56.
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016, pp. 22:1-22:26.

S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-learning
Approach for Classifying and Categorizing Android Sources and
Sinks,” Proceedings 2014 Network and Distributed System Security
Symposium, no. February, pp. 23-26, 2014. [Online]. Available: http:
/ /www.internetsociety.org/doc/machine-learning-approach-
classifying-and-categorizing-android-sources-and-sinks

P. Parrend and S. Frénot, “Supporting the secure deployment of
osgi bundles,” in 2007 IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks, June 2007, pp. 1-6.

——, “Security benchmarks of osgi platforms: toward hardened
osgi,” Software: Practice and Experience, vol. 39, no. 5, pp. 471-499,
2009. [Online]. Available: http://dx.doi.org/10.1002/spe.906

F. Goichon, G. Salagnac, P. Parrend, and S. Frénot, “Static
vulnerability detection in java service-oriented components,” J.
Comput. Virol., vol. 9, no. 1, pp. 1526, Feb. 2013. [Online].
Available: http:/ /dx.doi.org/10.1007 /s11416-012-0172-1

N. Geoffray, G. Thomas, B. Folliot, and C. Clément, “Towards
a new isolation abstraction for osgi,” in Proceedings of the 1st
Workshop on Isolation and Integration in Embedded Systems, ser.
ITES '08. New York, NY, USA: ACM, 2008, pp. 41-45. [Online].
Available: http://doi.acm.org/10.1145/1435458.1435466

N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot, and
B. Folliot, “I-jvm: a java virtual machine for component isolation
in osgi,” in 2009 IEEE/IFIP International Conference on Dependable
Systems Networks, June 2009, pp. 544-553.

K. Gama and D. Donsez, Towards Dynamic Component Isolation
in a Service Oriented Platform. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 104-120. [Online]. Available:
https://doi.org/10.1007 /978-3-642-02414-6{_}7

C. C. Huang, P. C. Wang, and T. W. Hou, “Advanced osgi security
layer,” in Advanced Information Networking and Applications Work-
shops, 2007, AINAW "07. 21st International Conference on, vol. 2, May
2007, pp. 518-523.

D. Gay and B. Steensgaard, “Fast escape analysis and stack allo-
cation for object-based programs,” in Proceedings of the 9th Inter-
national Conference on Compiler Construction, ser. CC '00. London,
UK, UK: Springer-Verlag, 2000, pp. 82-93.

F. Vivien and M. Rinard, “Incrementalized pointer and escape
analysis,” in Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, ser. PLDI "01.
New York, NY, USA: ACM, 2001, pp. 35-46. [Online]. Available:
http://doi.acm.org/10.1145/378795.378804

J. Whaley and M. Rinard, “Compositional pointer and escape
analysis for java programs,” in Proceedings of the 14th ACM
SIGPLAN Conference on Object-oriented Programming, Systems,

[28]

[29]

[30]

[31]

[32]

[33]

12
Languages, and Applications, ser. OOPSLA '99. New York,
NY, A: ACM, 1999, pp. 187-206. [Online]. Available:

http://doi.acm.org/10.1145/320384.320400

IBM T.J. Watson Research Center, “Watson Libraries for Analysis
(WALA),” http:/ /wala.sourceforge.net/wiki/index.php, 2006.

P. Buiras, D. Vytiniotis, and A. Russo, “Hlio: Mixing static
and dynamic typing for information-flow control in haskell,”
in Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP 2015. New York,
NY, USA: ACM, 2015, pp. 289-301. [Online]. Available:
http://doi.acm.org/10.1145/2784731.2784758

A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE].Sel. A. Commun., vol. 21, no. 1, pp. 5-19, Sep. 2006.
[Online]. Available: https://doi.org/10.1109/JSAC.2002.806121
W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI'10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 393-407. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Maziéres, J. C. Mitchell,
and A. Russo, “Hails: Protecting data privacy in untrusted web
applications,” in Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation, ser. OSDI'12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 47-60.

A. Yip, X. Wang, N. Zeldovich, and M. E. Kaashoek, “Improving
application security with data flow assertions,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP "09. New York, NY, USA: ACM, 2009, pp. 291-304.
[Online]. Available: http://doi.acm.org/10.1145/1629575.1629604

Andreas Dann is a Ph.D. student in the se-
cure software engineering research group at
Paderborn University. Andreas Dann’s current
research interests are the secure design of soft-
ware leveraging Java 9 ’'s module systems, as
well as the detection of security vulnerabilities in
open-source dependencies using static analysis.

Ben Hermann is a postdoctoral researcher at
Paderborn University and the Heinz-Nixdorf-
Insitute. His research focuses on static analy-
sis and software security. He worked on sev-
eral static analysis frameworks including Soot
and OPAL and has significant experience in en-
gineering these frameworks and the analyses
build on top of them. He received his doctorate
degree from the University of Darmstadt for his
work on Java security.

Eric Bodden is a full professor for Secure Soft-
ware Engineering at the Heinz Nixdorf Institute
of Paderborn University, Germany. He is fur-
ther the director for Software Engineering at the
Fraunhofer Institute for Engineering Mechatronic
Systems. Prof. Bodden has been recognized
several times for his research on program anal-
ysis and software security, most notably with the
German IT-Security Price and the Heinz Maier-
Leibnitz Price of the German Research Founda-
tion, as well as with several distinguished paper

and distinguished reviewer awards.

http://doi.acm.org/10.1145/3133926
https://doi.org/10.1007/978-3-319-26529-2{_}26
https://doi.org/10.1007/978-3-319-26529-2{_}26
http://link.springer.com/10.1007/978-3-540-30579-8{_}14
http://link.springer.com/10.1007/978-3-540-30579-8{_}14
http://doi.acm.org/10.1145/320384.320400
http://www.internetsociety.org/doc/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks
http://www.internetsociety.org/doc/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks
http://www.internetsociety.org/doc/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks
http://dx.doi.org/10.1002/spe.906
http://dx.doi.org/10.1007/s11416-012-0172-1
http://doi.acm.org/10.1145/1435458.1435466
https://doi.org/10.1007/978-3-642-02414-6{_}7
http://doi.acm.org/10.1145/378795.378804
http://doi.acm.org/10.1145/320384.320400
http://wala.sourceforge.net/wiki/index.php
http://doi.acm.org/10.1145/2784731.2784758
https://doi.org/10.1109/JSAC.2002.806121
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://doi.acm.org/10.1145/1629575.1629604

	1 Introduction
	2 Java Module System Design and Example
	2.1 Design of the Module System
	2.2 Motivating Example - Tomcat CVE-2017-5648

	3 Definition of Module Entrypoints
	3.1 Explicitly vs. Implicitly Reachable Entrypoints
	3.2 Design Choices
	3.3 Entrypoint Model: logic-based specification

	4 Design and Implementation of ModGuard
	4.1 Module Analysis Initialization
	4.2 Precise Modeling of Module Entrypoints
	4.3 Module Integrity & Confidentiality Analysis
	4.4 Limitations of ModGuard

	5 Evaluation
	5.1 RQ1: Confidentiality and Integrity Violations in Java Modules – Micro MIC9Bench
	5.2 RQ2: Confidentiality and Integrity Violations in Real-World Application
	5.2.1 Setup - Tomcat Modularization
	5.2.2 Integrity & Confidentiality Violations in Tomcat

	6 Related Work
	7 Conclusion
	References
	Biographies
	Andreas Dann
	Ben Hermann
	Eric Bodden

