
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 1

Identifying Challenges for OSS Vulnerability
Scanners - A Study & Test Suite

Andreas Dann∗, Henrik Plate†, Ben Hermann‡, Serena Elisa Ponta†, Eric Bodden§

Abstract—The use of vulnerable open-source dependencies is a known problem in today’s software development. Several
vulnerability scanners to detect known-vulnerable dependencies appeared in the last decade, however, there exists no case study
investigating the impact of development practices, e.g., forking, patching, re-bundling, on their performance.
This paper studies (i) types of modifications that may affect vulnerable open-source dependencies and (ii) their impact on the
performance of vulnerability scanners. Through an empirical study on 7,024 Java projects developed at SAP, we identified four types of
modifications: re-compilation, re-bundling, metadata-removal and re-packaging. In particular, we found that more than 87% (56%,
resp.) of the vulnerable Java classes considered occur in Maven Central in re-bundled (re-packaged, resp.) form. We assessed the
impact of these modifications on the performance of the open-source vulnerability scanners OWASP Dependency-Check (OWASP)
and Eclipse Steady, GitHub Security Alerts, and three commercial scanners. The results show that none of the scanners is able to
handle all the types of modifications identified. Finally, we present Achilles, a novel test suite with 2,505 test cases that allow replicating
the modifications on open-source dependencies.

Index Terms—Security maintenance, Open-Source Software, Tools, Security Vulnerabilities.

F

1 INTRODUCTION

THE use of open-source software (OSS) is an established
practice in software development, even for industrial

applications as much as 75% of the code comes from OSS
[1], [2], [3], [4]. At the same time, more than 67% of the
applications include vulnerable OSS with on average 22
individual vulnerabilities [1].

Vulnerabilities in widely-used OSS, e.g., Jackson, Apache
Commons, or Struts, already proved to have serious conse-
quences. An (in)famous example is the Equifax breach [5],
[6], which was caused by the vulnerability CVE-2017-
5638 [7] in Apache Struts2.

To detect vulnerable OSS, research and industry have de-
veloped several open-source vulnerability scanners, e.g., the
open-source tools OWASP Dependency-Check (OWASP)
and Eclipse Steady, the free tool GitHub Security Alerts, and
commercial tools such as Snyk, Black Duck, or WhiteSource.

Since vulnerabilities in open-source dependencies pose a
high risk, scanners should detect them with high precision

• ∗ The author is now with CodeShield GmbH. At the time of writing, he
was with the Secure Software Engineering group, Heinz Nixdorf Institute,
Paderborn University, Germany.
E-mail: 〈First Name〉.〈Last Name〉@uni-paderborn.de

• † The authors are with SAP Security Research Mougins, France.
E-mail: 〈First Name〉.〈Last Name〉@sap.com

• ‡ The author is professor for Secure Software Engineering, Technical
University of Dortmund, Germany.
E-mail: ben.hermann@cs.tu-dortmund.de

• § The author is Professor for Secure Software Engineering at the De-
partment of Computer Science of Paderborn University and Director for
Software Engineering and IT-Security at Fraunhofer IEM, Paderborn,
Germany.
E-mail: eric.bodden@iem.fraunhofer.de

Manuscript received July, 2020;

and recall. However, developers and distributors frequently
fork, patch, re-compile, re-bundle, or re-package existing
OSS [2], [3], [4], [8]. As a result, the same vulnerable code
may occur in different, modified dependencies, thereby
posing a challenge for the detection of known-vulnerable
OSS [9], [10], [11].

Previous studies [1], [2], [3], [8], [12] investigate to which
extent open-source or industrial applications include (vul-
nerable) OSS. However, they do not study modifications,
like patching, re-compiling, or re-packaging, that may affect
vulnerable open-source dependencies, nor their impact on
the performance of vulnerability scanners. Furthermore, the
studies do not present data sets or test suits that facilitate
the comparison and evaluation of vulnerability scanners.

While existing benchmarks such as the Evaluation
Framework for Dependency Analysis [13] allow one to
evaluate single features of vulnerability scanners, e.g., de-
pendency resolution, they do not provide a ground truth for
assessing their performance. Moreover, they do not contain
test cases for modifications such as re-compiled and re-
packaged classes.

This paper studies the types of modifications that may
affect open-source dependencies and investigates their im-
pact on the performance of vulnerability scanners.

We conducted a two-folded case study on 7,024 Java
projects developed at SAP , the world’s third-largest soft-
ware development company. First, we scanned the 7,024
Java projects with Eclipse Steady, OWASP Dependency
Check, and a commercial vulnerability scanner to gain an
in-depth understanding of the use of open-source depen-
dencies at SAP . We applied three different vulnerability
scanners that use different vulnerability databases to avoid
being subject to the shortcomings of a particular scanner
or database. Our study shows that the projects include
about 79% of OSS transitively, supporting the studies by

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 2

Pashchenko et al. [12], [14]. To investigate the prevalence of
vulnerable OSS, we classify the vulnerabilities reported for
the most-used 20 dependencies into true- and false-positives
in semi-manual reviews. A major finding is that the projects
do not only include unmodified OSS distributed by the
original OSS-project but also include code that has been
altered in some way and is re-distributed in the context of
other (downstream) projects. In our study, we observed four
modification types: re-compilation, re-packaging, metadata-
removal, e.g., MANIFEST files, Uber-JARs, or combinations
of those.

Second, we investigated the prevalence of these modifi-
cations on the public OSS repository Maven Central, and
their impact on vulnerability scanners. On Maven Cen-
tral, we found cases of Uber-JARs (87%), re-compilation
(56%), re-packaging, and metadata-removal (57%) for the
vulnerabilities identified in the first part. To evaluate the
modifications’ impact on vulnerability scanners, we further
chose a representative set of 16 vulnerabilities, applied the
identified modifications, and evaluated the performance of
three commercial vulnerability scanners1, GitHub Security
Alerts, and the open-source scanners OWASP and Eclipse
Steady.

Our study shows that the identified modifications are a
major challenge for the detection of vulnerable OSS as none
of the scanners considered is able to handle all types of mod-
ification. Thereby, our work highlights the need for further
research in the area to improve the detection algorithms and
methods implemented by vulnerability scanners.

To facilitate a reproducible and comparative assessment
of vulnerability scanners, this paper also introduces Achilles,
a novel test suite to replicate modified dependencies. To-
gether with Achilles, we also provide 2,505 test cases (la-
beled true- and false-positives) for 723 distinct open-source
artifacts, all observed versions of the 20 most-used artifacts,
and 249 distinct vulnerabilities. We derived the test cases
directly from our case study.
To summarize, this work makes the following contributions:
• a case study on the use of OSS in industrial Java projects

developed at SAP (Section 5),
• a case study on the prevalence of modifications of OSS

dependencies and their impact on the performance of
vulnerability scanners (Section 6),

• a novel test suite for assessing vulnerability scanners,
Achilles, derived from our study (Section 8)

Achilles, along with our case study, is made available as an
open-source project2.

The paper is structured as follows. Section 2 explains
the terminology. Section 3 discusses related work. Section 4
presents our research questions and methodology. Section 5
investigates the use of OSS at SAP. Section 6 studies the
prevalence and impact of the found modifications. Section 7
summarizes and discusses our observations. Section 8 in-
troduces Achilles. Section 9 discusses threats to validity and
Section 10 concludes.

1Due to license restrictions, we cannot disclose their names.
2https://github.com/secure-software-engineering/achilles-

benchmark-depscanners

2 BACKGROUND & TERMINOLOGY

In this paper, we rely on the established terminology used
by the well-known build-automation tool Maven.

We use the term dependency for a software library or
framework, which is a separately distributed software arti-
fact. In Java, a dependency is commonly distributed as a JAR
file, which logically groups a set of classes and resources.

Build-automation tools like Maven, Gradle, and Ant+Ivy
automate the process of including OSS as dependencies. All
these tools use a similar syntax for declaring dependencies
and pull JARs from private or public artifact repositories.
The most popular public repository for Java is Maven Cen-
tral with more than 4.7 million open-source artifacts and
over 70 million downloads per week [15].

To declare a dependency, developers specify in a
project’s pom.xml file: the groupId identifying the ven-
dor; the artifactId identifying the component; and the
version of the OSS. This triple is referred to as GAV.

One can distinguish between release dependencies,
which are shipped with the application, and development-
only dependencies, which are only used during develop-
ment, e.g., for testing. To declare a release dependency
developers specify dependency with the scope: compile,
runtime, or system. Whereas dependencies with the scope
test or provided are development-only dependencies, e.g.,
the JUnit testing framework. Since only release depen-
dencies are shipped with an application, vulnerabilities
in development-only dependencies are not exploitable in
production.

Dependencies are also distinguished into direct and tran-
sitive. A dependency is called direct if developers declare it
explicitly in the pom.xml. A dependency is called transitive
if it is not explicitly declared but automatically included by
other dependencies.

The complete set of direct and transitive dependencies
of a project is called Bill of Materials (BoM).

3 RELATED WORK

3.1 Studies: Use of Vulnerable OSS

Most related is the empirical study on the use of vulner-
able open-source dependencies in industrial Java applica-
tions developed at SAP by Pashchenko et al. [12], [14].
The authors applied the code-based vulnerability match-
ing approach of Eclipse Steady to investigates the risk
of vulnerable, transitive OSS from the perspective of the
developers. In particular, the authors study how many
vulnerable dependencies can be fixed by project devel-
opers themselves, whereas this paper investigates project
metrics affecting vulnerability scanners. They found that
even if the majority of vulnerabilities is located in transitive
dependencies, developers can fix – in fact – 80% of the
vulnerable release dependencies either by fixing a bug in a
single OSS project or by updating a direct dependency [12].
The authors provide a new methodology for assessing the
impact of vulnerable, transitive dependencies on a project
by grouping (transitive) vulnerabilities that can be “easily”
fixed by updating a direct one. In contrast to our study, they
do not investigate modified OSS, their prevalence, and their
impact on vulnerability scanners.

https://github.com/secure-software-engineering/achilles-benchmark-depscanners
https://github.com/secure-software-engineering/achilles-benchmark-depscanners

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 3

Further reports by Synopsis [16], and Williams and
Dabirsiaghi [17] investigate the use of OSS in an indus-
trial context. The reports show that more than 67% of
the investigated applications include on average vulnerable
dependencies with 22.5 vulnerabilities per dependency [16].
While the studies emphasize the need for open-source vul-
nerability scanners, they do not investigate modified OSS
nor their impact on scanners’ performance.

Kula et al. [8] and Bavota et al. [4] investigate vulnerable
dependencies in the context of open-source projects and
how developers update dependencies. Kula et al. [8] found
that the majority (81.5%) of studied projects include out-
dated or vulnerable open-source dependencies. Both stud-
ies conclude that most developers are reluctant to update
dependencies or unaware of new versions.

Analogous to our observation of modified OSS JARs,
Lopez et al. [18] found that source-code clones and modified
source-code occur in 80% of all studied open-source project.

None of the existing studies focuses on modifications
that impact the performance of vulnerability scanners nor
the prevalence of modified OSS. Our case study comple-
ments existing work and shows that – on top of source-code
clones – vulnerable code clones are also introduced during
the build process of downstream projects by re-bundling
and re-packaging.

3.2 OSS Vulnerability Databases & Scanners

The most widespread vulnerability database is the Na-
tional Vulnerability Database (NVD) [19]. The NVD links
a vulnerability (CVE) to a set of operating systems, hard-
ware, or software components using the Common Plat-
form Enumeration (CPE) standard. Although the NVD is
the main source for vulnerabilities, false-negatives easily
arise because the NVD is not complete and the set of
CPEs does not always contain all affected artifacts. False-
positives also arise because the CPEs over-approximate
the affected versions or specify a complete application in-
stead of the affected library [20]. For instance, the CPEs
of CVE-2018-1271 contain the complete Spring framework
pivotal_software:spring_framework, whereas only
a single library is vulnerable – spring-webmvc [21]. Ad-
ditionally, the CPEs use a different granularity and schema
than build-automation tools, like Maven or NPM.

To cope with the shortcomings of the NVD, addi-
tional (commercial) databases such as the Eclipse Steady
database [10], the Exploit Database [22], or WhiteSource’s
vulnerability database [23] have been created. However,
these databases differ w.r.t. the affected artifacts and ver-
sions, and thus no common ground truth exists.

To identify known-vulnerable dependencies, vulnerabil-
ity scanners build a project’s BoM and query a vulnerability
database if known vulnerabilities for the found dependen-
cies exist. For matching a dependency against the entries
in a vulnerability database different strategies exist. The
most popular techniques are name-based and code-based
matching [9], [11].

OWASP, which relies on the NVD, and GitHub Security
Alerts, for instance, apply name-based matching to iden-
tify known-vulnerable dependencies. They extract from a
project’s pom.xml (and JARs), for each dependency the

vendor, product name, and version, and use fuzzy-matching
to compare it against the CPEs in the NVD or WhiteSource’s
vulnerability database [23]. Such an approach fully relies on
the information present in the database and the correctness
of the metadata (vendor, name, version) in the pom.xml and
JARs.

Eclipse Steady, for instance, applies code-based match-
ing [9], [11]. The scanner checks a JARs’ bytecode for known
vulnerabilities. To do so, Eclipse Steady computes the digest
of each JAR and the fully-qualified name (FQN) of all classes
and methods. The scanner then uses Steady’s Database to
check for vulnerabilities that affect the found FQNs. Such
an approach requires the creation of a separate database
that contains all the vulnerable software constructs (e.g.,
constructors, methods, initializers, and their FQNs) for each
vulnerability. To this end, for each disclosed vulnerability
the commits fixing that vulnerability must be identified to
derive the vulnerable constructs.

Note that the matching approaches and databases used
by commercial vulnerability scanners are not made publicly
available. Commercial scanners may use a combination of
those or rely on additional features for matching, e.g., file
digests, timestamps, bytecode, etc.

In our study, we apply OWASP, Steady, and a com-
mercial scanner C3 to balance the shortcomings of one
particular matching strategy or a single database – as the
used scanners rely on different databases.

3.3 Vulnerability Benchmarks

Most related to Achilles is the SourceClear benchmark [13].
The benchmark provides test cases invoking the vulner-
able code of an open-source dependency for Java, Scala,
Ruby, Python, C, C#, JavaScript, PHP, and Go. However,
the benchmark does not replicate modifications, such as re-
compiled class-files, re-packaging, deleted or lost metadata.
The benchmark’s ground truth does not specify the vulner-
able dependency nor the published vulnerabilities. Thus,
it cannot be utilized to evaluate a vulnerability scanner’s
precision and recall.

Vulnerability collections and benchmarks for assessing
the performance of security scanners are BugBox [24] for
PHP, the SAMTE reference data set [25], SecuriBench [26],
and the Juliet TestSuite [27]. The benchmarks provide test
cases with known security flaws for evaluating application
security testing tools but do not provide test cases for
detecting known-vulnerable OSS.

Wide-spread benchmarks like the DaCapo [28] bench-
mark suite, the Qualitas Corpus [29], or the XCorpus [30]
provide test corpora for evaluating static analyses but do
not provide test cases for detecting known vulnerabilities in
OSS.

Existing benchmarks and vulnerability databases like the
NVD [19] and ExploitDB [22] do not provide a curated
collection of vulnerable OSS, do not specify the vulnerable
classes and methods, nor provide ground truth. Thus, they
are insufficient to assess vulnerability scanners. Achilles and
its ground truth extend and complement existing databases
and benchmarks by aggregating vulnerable OSS and speci-
fying the vulnerable classes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 4

4 STUDY DESIGN

4.1 Research Questions

The purpose of this paper is to gain an in-depth under-
standing of the settings in which vulnerability scanners
have to operate and the impact of modified OSS on their
performance. To gain such an in-depth understanding of
real-world situations and processes case studies are a suit-
able mean [31]. The observations that we conclude from
our study can be seen as hypotheses or be the basis on
which new hypotheses, studies, and experiments can be
formulated and conducted.

Our case study is two-folded. In the first part, we inves-
tigated the settings regarding the use of OSS in an industrial
context, in particular, SAP . We investigated RQ1: What are
the practices in using OSS at SAP? We evaluated project
metrics that influence the construction of a complete BoM,
which is a necessary first step before checking for vulnerable
dependencies. In particular, we computed the number of
(direct and transitive) dependencies a project includes on
average. This is the number of dependencies a vulnerability
scanner has to analyze. Further, we compared the ratio of di-
rect to transitive dependencies. As developers only include
direct dependencies explicitly, vulnerabilities are less likely
to be discovered in manual reviews if they are located in
transitive dependencies [8], [14]. Next, we checked the ratio
of release to development-only dependencies. Since only
release dependencies would be available in production, only
vulnerabilities in those are exploitable. Finally, we deter-
mined the ratio of open-source to proprietary dependencies.
Since vulnerability scanners check for known-vulnerable
OSS, investigating the extent of OSS helps understanding
how critical the performance of vulnerability scanners is.

To investigate the prevalence of vulnerable OSS, we
investigated the following questions. We selected a rep-
resentative set of the 20 most-used dependencies at SAP
first, and then checked RQ2: What vulnerabilities affect
the most-used dependencies? Therefore, we semi-manually
evaluated for 723 distinct open-source artifacts, all observed
versions of the 20 most-used dependencies, what vulnerabil-
ities affect them. This semi-manual classification also serves
as the basis for Achilles.

As already stated by Ponta et al. [9], [11], the metadata
of a dependency is often invalid or may be missing as
developers fork, patch, re-compile, re-bundle, or re-package
existing open-source artifacts [2], [3], [4], [8]. To elaborate
this observation, we investigated RQ3: How do developers
include OSS? We classified the observed modifications into
four different types.

In the second part, we further investigated the identified
modification types. First, we checked RQ4: How prominent
are the modifications outside SAP? In particular, we evalu-
ated how often the modifications that we identified in RQ3
occur on Maven Central.

To evaluate RQ5: What is the impact of the modifi-
cations on vulnerability scanners, we compared the per-
formance of six open-source and commercial vulnerability
scanners w.r.t. the identified modifications. To do so, we
computed for each scanner its precision, recall, and F1-score
when analyzing modified OSS.

Table 1: 20 most-used dependencies, grouped by GA

#Projects GA (groupId, artifactId) Rank [32]

3211 commons-codec:commons-codec 25
3026 org.slf4j:slf4j-api 2
2899 com.fasterxml.jackson.core:jackson-annotations 50
2854 com.fasterxml.jackson.core:jackson-core 45
2851 com.fasterxml.jackson.core:jackson-databind 15
2831 org.apache.httpcomponents:httpcore 79
2781 commons-logging:commons-logging 20
2774 org.apache.httpcomponents:httpclient 21
2662 com.google.code.gson:gson 19
2617 org.springframework:spring-core 47
2574 org.springframework:spring-beans 54
2533 org.springframework:spring-context 23
2518 org.springframework:spring-aop -
2503 org.springframework:spring-expression -
2495 commons-io:commons-io 6
2371 org.apache.commons:commons-lang3 13
2133 org.springframework:spring-web 55
2105 com.google.guava:guava 4
2046 javax.validation:validation-api 73
1895 org.springframework:spring-webmvc 70

4.2 Study Objects & Methodology

We conducted an industrial case study [31] on 7,024 different
Java projects developed at SAP to answer the research
questions.

4.2.1 Studied Projects & Project Metric Extraction

The investigated 7,024 different Java projects cover a wide
range of industrial enterprise-applications, platforms, in-
house tools, microservices, and monoliths. In particular, we
investigated the BoMs of each project created by the vul-
nerability scanner Eclipse Steady, which uses the API of the
build-automation system Maven [11]. The generated BoMs
contain the project’s GAV (uniq. identifier) and a complete
description of the used dependencies. In particular, the BoM
states for each dependency (and its JAR file) the GAV, the
scope, whether it is direct or transitive, the filename, and
SHA1. Further, we investigated the use of modified OSS
and classified the observed modifications into four different
types.

The initial data set consisted of 49,752 different BoMs
generated by Eclipse Steady. Since the BoMs were generated
during the build process, the data set included a separate
BoM for each version of a project. To balance our data set,
we only included the latest BoM of each project. As a result,
the filtered data set consisted of the BoMs of 7,024 distinct
projects (projects with distinct GAs).

4.2.2 Dependency Selection

For answering the research questions 2, 4, and 5, we
investigated in semi-manual reviews what vulnerabilities
affect a given dependency and what Java classes contain
the vulnerable code. To keep the workload for these semi-
manual reviews manageable, we decided to limit ourselves
to 20 OSS library projects. To ensure industrial relevance, we
selected the sample set from the data set as follows : we only
considered release dependencies, dependencies with scope
compile and runtime, grouped them by their GA, counted
how many projects include a dependency with the given
GA, and, finally, selected the 20 most-used ones, shown in
Table 1.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 5

To study the relevance of our sample set within the
open-source community, we checked if the selected 20 most-
used dependencies are also popular on Maven Central.
Table 1 shows their ranking among the 100 most-used
dependencies, using the statistics provided by MvnRepos-
itory [32] in column Rank. The table shows that 18 out of
the 20 most-used dependencies are within the 79 most-used
dependencies on Maven Central. Only two dependencies,
spring-expression and spring-aop, are not within the 100
most-used.

The table also shows that the libraries’ popularity within
SAP and Maven Central slightly differs. One reason for this
deviation could be the fact that the MvnRepository ranking
includes dependencies with the scope test (in total 8) and
Kotlin, Scala, and Closure dependencies (in total 13), which
we excluded.

To study how often the sample set is used within open-
source projects, we extracted the number of usages for all
723 artifacts (GAVs) – all observed versions of the 20 most-
used dependencies – as reported by MvnRepository [32],
resulting in the log-normal distribution in Figure 1. The
figure shows that the dependencies in the sample set are
also regularly used in open-source projects.

100 101 102 103 104

Usages

0

50

100

150

200

250

De
pe

nd
en

cie
s

Figure 1: The #usages of the sample 723 distinct artifacts
(GAVs) as reported by mvnrepository.com.

4.2.3 Vulnerable Dependency Identification

As described in Section 3, all current approaches for match-
ing vulnerabilities and OSS are prone to false-positives and
false-negatives. Moreover, the databases are not complete
w.r.t. the reported vulnerabilities and the set of CPEs, result-
ing in false-negatives.

To reduce the likelihood of false-positives and false-
negatives, we used three different vulnerability scanners
for identifying vulnerable dependencies: the open-source
scanner Eclipse Steady and OWASP, and the commercial
scanner C3. The scanners apply different matching strate-
gies: Eclipse Steady applies a code-based matching, whereas
OWASP uses name-based matching. For C3 there is no
public information available describing the underlying ap-
proach. By choosing these scanners our results are based
on three different vulnerability databases: Eclipse Steady
uses its open-source database [10], [33], OWASP uses the
NVD [19], and C3 uses a commercial database. Thereby, we

aim to improve the validity of our results and Achilles by
balancing out the shortcomings of one particular database.

Finally, we classified the scanners’ reports in semi-
manual reviews (cf. Section 5.2) into true- and false-
positives. In total, we classified 723 distinct artifacts (GAVs)
– considering all versions of the selected GAs – and 2,505
reports.

4.2.4 Identification of Modifications on Maven Central
To assess the prevalence of the identified modifications out-
side SAP , we check how often they occur on Maven Central.
To do so, we first checked for the vulnerabilities identified
in RQ2 what class-files (contained in the dependency’s JAR)
are vulnerable by investigating commits fixing those vul-
nerabilities. Second, we computed how often the identified
vulnerable classes occur in modified form on Maven Central
w.r.t. the identified modification types 1–4.

To check if the bytecode of a vulnerable class matches
the found classes on Maven Central, we compared their
bytecode using the tool SootDiff [34]. SootDiff’s comparison
was specifically designed to be resistant to changes induced
by various compilation schemes, and thus allows us to check
for bytecode equivalence even if a modification has been
applied to one of the classes.

5 USE OF OSS AT SAP
In this section, we address the research questions RQ1, RQ2,
and RQ3 by investigating the practices regarding the use
of OSS in an industrial context. To this end, we conducted
an empirical study on 7,024 Java projects developed at SAP ,
one of the world’s largest software development companies.

5.1 RQ1: What are the practices in using OSS at SAP?

To answer RQ1, we first computed the average number
of dependencies per project. Therefore, we calculated the
number of distinct dependencies’ GAVs (uniq. identifier:
vendor, component, version), calculate the arithmetic mean,
and standard deviation [35]. We found that, on average, a
project includes 94.78 direct and transitive dependencies
with distinct GAVs, with a standard deviation of 124.61.
The high standard deviation shows that the size of a BoM
heavily varies among projects.

Counting the distinct GAVs seems simple, however, it
may suffer from several issues described by Pashchenko
et al. [14]. For instance, if a developer declares a depen-
dency on spring-context, its transitive dependencies with
the same groupId are counted as separate dependencies.
This overweights dependencies that are released as multiple
JARs, e.g., frameworks like Spring or Struts. To overcome
this issue, we count the number of distinct groupIds per
project as proposed by Pashchenko [14]. This resulted in
36.34 (sd = 35.84) direct and transitive dependencies per
project, with a median of 25. The number of dependencies
highly varies per project, ranging from 0 to 228 dependen-
cies. Unless stated otherwise, we use this grouping for the
remainder of the paper.

Second, we computed the ratio of direct to transitive de-
pendencies, shown in Figure 2. The figure shows that only
21% are direct dependencies, whereas 79% are transitive.

mvnrepository.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 6

More than 50% of the studied projects incorporate
at least the framework Spring or Struts. Although we
only count distinct GAs (uniq. identifier: vendor, com-
ponent), these frameworks include a high number of
transitive dependencies with different groupIds. For in-
stance, the framework spring-boot-starter:2.17 intro-
duces 17 dependencies with various groupIds, e.g., javax.*,
ch.qos.logback, org.apache.*. The high number of transi-
tive dependencies is caused by the fact that each depen-
dency has dependencies on its own, and so on. Since all but
the direct dependencies of the project itself are considered
transitive by Maven, their amount is high in the studied
projects.

Third, we investigated how many dependencies would
be deployed with a release. Therefore, we computed the
ratio of scopes declared by the developers (cf. Figure 2). The
results show that most dependencies 58.1% have the default
scope compile, and thus are available during compilation and
runtime. 4.9% have the scope runtime, and thus are available
on the runtime classpath. 20.2% have the scope provided/sys-
tem, and thus are available at runtime only. 16.8% have the
scope test, and thus are development-only dependencies,
not deployed in production. The high number of depen-
dencies with the scopes runtime and provided/system shows
that 25.1% of the dependencies are not shipped with the
application but are pre-installed or provided by the system
on which the application is executed, which may differ
from the build system. However, vulnerability scanners
are executed on the build system, and thus are unable to
identify vulnerabilities in dependencies that are provided
later – during runtime.

type

0

20

40

60

80

100

86.09

13.91%
in

p
ro
je
ct

(a
v
er
a
g
e)

proprietary oss

resolve

79

21

direct transitive

scope

58.1

20.2

16.8

4.9

runtime
provided/
system

test compile

Figure 2: BoM metrics for dependencies with distinct GA

Fourth, to check to what extent OSS is used in an
industrial context, we computed the ratio of open-source
to proprietary dependencies. To distinguish between open-
source and proprietary dependencies, we classified each
dependency that is hosted on Maven Central as open-source
and any other as proprietary. Figure 2 shows the results.
As other repositories also exist, e.g., Sonatype, JCenter, or
Redhat JBoss, the computed ratio is only a lower bound.

On average, 86.09% of the dependencies are open-
source, whereas only 13.91% are proprietary. Moreover, the
use of open-source dependencies is ubiquitous as 95.43% of
the projects include at least one OSS library.

On average, an industrial Java project includes 36 di-
rect and transitive dependencies, 86% of them being
open-source. The majority of dependencies (79%) are
transitive and (58.1%) are release dependencies.

5.2 RQ2: What vulnerabilities affect the most-used de-
pendencies?

We investigated how many vulnerabilities affect the 20
most-used dependencies that we selected as described
at Section 4.2.2. As vulnerabilities affect specific version
ranges, we considered all versions of the dependencies in
our data set. In total, our data set contains 723 different
artifacts (GAVs) for the 20 most-used dependencies (GA).

To identify known-vulnerable dependencies, we used
the vulnerability scanners: Eclipse Steady, OWASP, and
C3. Since these scanners rely on different vulnerability
databases we aim to improve the validity of the results,
as described in Section 4.2.3. As input for those scanners,
we created for each GAV a separate Maven project with
a direct dependency on that GAV, including all optional
dependencies.

Table 2 shows the number of findings separated per tool
per GA and the number of distinct reported vulnerabilities.
The column Dependency shows the GAs that were declared
as a direct dependency in the created Maven projects. The
column Reported vulnerable Dependency shows the (direct or
transitive) dependency that was reported as being vulner-
able. The column #Dist. Findings contains the number of
found vulnerabilities. The brackets contain the number of
distinct artifacts (GAVs) which were reported. Highlighted
cells indicate cases in which the scanners reported the direct
dependency as vulnerable.

Table 2 includes both true- and false-positives, which we
later classified in semi-manual reviews. Moreover, Eclipse
Steady and C3 also reported vulnerabilities that were not of-
ficially reported to the NVD, and thus do not have a common
vulnerabilities and exposures (CVE) number, e.g., bugs or vul-
nerabilities disclosed in bug trackers. Though we considered
these vulnerabilities in Table 2, we ignored them for Achilles,
as different scanners may name the same bug differently or
may not consider them as vulnerabilities, thereby hindering
a fair comparison. In total, the scanners reported 249 distinct
CVEs for 527 of the 723 different artifacts (GAV). Since
a single CVE usually affects multiple versions, e.g., CVE-
2016-3720 affects jackson-dataformat-xml version 2.0.0 to
2.7.4, the scanners generated 2,505 distinct findings (GAV,
vulnerability).

The table shows that scanners reported the most vul-
nerabilities for transitive dependencies. Note that the vul-
nerability scanners did not report anything for commons-

-codec, commons-io, commons-logging, commons-lang3,
gson, httpcore, jackson-annotations’ jackson-core, and
slf4j-api, which are therefore omitted.

Steady, OWASP, and C3 generated 2,505 findings for
723 different artifacts and 249 CVEs. The majority of
vulnerabilities affect transitive dependencies.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 7

Table 2: Sample of TP & FP Vulnerabilities reported by
Eclipse Steady, OWASP Dependency-Check, C3

#Dist. Findings
Dependency (#GAVs*)

Reported vulnerable
Dependency (#GAVs*) #Dist. Vuln. Steady OWASP C3

guava (35) guava (25) 1 12 25 25
httpclient (22) httpclient (18) 7 4 9 40

groovy (1) 2 4 0 0jackson-databind (54) jackson-databind (53) 16 227 203 218
spring-aop (61) spring-core (52) 25 17 374 29

groovy-all (8) 2 30 18 24spring-beans (61) spring-core (52) 25 23 29 375
bsh (2) 1 60 60 55
hibernate.validator (2) 1 0 4 0
groovy-all (10) 2 45 28 34
hibernate-validator (5) 2 7 8 7
jruby (4) 6 1 18 2
jsoup (1) 1 0 2 0
spring-core (51) 25 28 368 26

spring-context (60)

spring-expression (46) 2 92 0 0
commons-collections (1) 4 5 10 8spring-core (62) spring-core (53) 24 20 390 31
spring-core (48) 25 4 29 11spring-expression (57) spring-expression (10) 2 20 0 0
axis (1) 3 0 9 0
axis-saaj (1) 3 0 9 0
commons-fileupload (3) 6 50 49 9
commons-httpclient (1) 1 3 0 0
groovy-all (8) 2 18 12 17
guava (1) 1 9 9 9
httpasyncclient (1) 1 0 1 0
httpclient (7) 5 26 5 24
jackson-databind (28) 13 396 134 134
jackson-dataformat-xml (20) 5 23 90 14
jetty-http (21) 9 116 192 74
jetty-security (15) 1 33 0 0
jetty-server (20) 6 148 0 109
jetty-servlet (19) 1 38 0 0
jetty-util (20) 4 75 0 68
netty-all (9) 2 10 15 4
okhttp (2) 1 3 3 3
org.apache.axis (1) 1 3 0 0
protobuf-java (1) 1 0 31 31
spring-core (43) 25 22 305 20
spring-expression (37) 2 74 0 0
spring-oxm (14) 4 24 0 8
spring-web (44) 12 42 0 105

taglibs (1) 1 0 1 1
tomcat-embed-core (7) 8 30 15 32

spring-web (46)

undertow-core (4) 6 12 0 44
bcprov-jdk14 (2) 14 180 481 37
bcprov-jdk15on (1) 3 16 24 16
castor (1) 1 0 5 0
commons-beanutils (3) 2 88 45 43
commons-collections (4) 4 18 46 21
commons-compress (1) 1 33 0 33
commons-fileupload (1) 5 5 0 0
dom4j (1) 1 1 0 0
groovy-all (8) 2 17 12 15
guava (1) 1 24 25 25
itextpdf (1) 2 2 0 3
jackson-databind (28) 13 407 139 139
jackson-dataformat-xml (19) 5 21 85 13
jasperreports (8) 6 0 68 0
lucene-queryparser (1) 1 29 0 0
ognl (1) 1 43 44 44
poi (8) 7 35 107 72
poi-ooxml (3) 24 24 0 24
spring-core (38) 23 12 20 251
spring-expression (33) 2 66 0 0
spring-oxm (13) 5 12 0 19
spring-tx (1) 1 1 0 1
spring-web (40) 13 75 0 100

spring-webmvc (45)

spring-webmvc (38) 8 28 28 99
validation-api (5) bsh (1) 1 4 0 0

* GAV - a unique identifier in Maven for an artifact at a specific version
in orange - direct dependency

To investigate the ratio of true-positive and false-positive
reported vulnerabilities, we semi-manually classified the
2,505 reports, using the following procedure:
1. We checked if the NVD [19] or Eclipse Steady’s database
contains a reference to a commit, issue, or pull request fixing
the reported vulnerability. We successfully found, in total, 96
source-code commits and identified 254 vulnerable classes.
2. If we found a commit, we checked if the reported JAR file
contains the vulnerable bytecode.
2.1. To do so, we first determined the vulnerable method(s),
class(es), static initializer(s), changed by the commit using
Eclipse Steady and its database [11]. Thereby, we used the
bytecode of the vulnerable artifacts that Steady identified as

vulnerable for further comparison.
2.2. Second, we compared the bytecode of the vulnerable
classes, methods, or static initializer with the bytecode con-
tained in the reported JAR using SootDiff [34].
2.3. If the bytecode of at least one class, method, or static
initializer matched the vulnerable code, we classified the
finding as true-positive. In these steps, we classified 428
reports as true-positive, 792 as false-positive, and left 1285
for further investigation.
3. If we did not find a commit or SootDiff’s comparison
failed, we searched the NVD and Eclipse Steady’s database
for links to issue boards or bug trackers.
4. If we found a link to an issue or bug tracker, we checked
whether the description states the vulnerable artifacts and
versions.
4.1. If a description existed and matched the reported arti-
fact, we classified the finding as true-positive.
4.2. If a description existed but did not match the reported
artifact or the NVD entry referred to a different artifact, we
classified the finding as false-positive. In total, we classified
306 reports as true-positive, 821 as false-positive, and 158 as
ambiguous.
5. If we could not find a link or the description was ambigu-
ous, we checked the set of CPEs in the NVD [19].
5.1. If the CPE exactly matched the reported artifact, we
classified the finding as true-positive.
5.2. If the CPE did not match, we classified the finding
as false-positive. Finally, we classified 15 reports as true-
positive, 141 as false-positive, and 2 as ambiguous.

We could not classify two findings using the steps above:
one finding referenced CVE-2013-5855 and one referenced
CVE-2014-7810. For these findings, we looked into the two
reported JARs manually and found that they only contain
the API (abstract classes, and interfaces) of the vulnerable
artifacts but no implementation. Thus, we classified them
as false-positive. In total, we classified 859 (34%) as true-
positive, and 1,646 as false-positive of the 2,505 reports.

We classified 859 of the 2,505 findings in reviews as
true-positive, and the rest as false-positive.

5.3 RQ3: How do developers include OSS?
In our study, we observed four types of modification that
may affect OSS dependencies.

Unmodified: Most commonly, we observed that devel-
opers include an OSS directly from Maven Central using its
plain GAV.

Type 1 (patched): We noticed that developers include
OSS with a slightly modified GAV, e.g., com.google:guava:-
23.0_fix3. We investigated that these type 1 dependencies
occur if developers or distributors fork the source-code of
an OSS and modify or patch it slightly, and indicate these
changes by appending a suffix string like fix to the version.
The JAR file does not contain the original bytecode but the
(modified) re-compiled source-code, changing the classes’
digests and timestamps [9], [11].

In our study, we observed the modifications re-bundling,
metadata-removal, and re-packaging along with so-called
Uber-JARs – sometimes also called fat-JARs. Uber-JARs
merge multiple OSS artifacts into a single JAR to ease, for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 8

instance, deployment or distribution. In the following, we
further elaborate on Uber-JARs and how they relate to the
observed modifications re-bundling, metadata-removal, and
re-packaging.

Type 2 (Uber-JAR): We found projects that include a
few dependencies with GAVs that do not indicate which
OSS the JAR file contains, e.g., com.my:servicebundle:1.0.
Such dependencies re-bundle multiple OSS (and transitive
dependencies) into a single JAR file, so-called Uber-JAR.
Examples are, for instance, the jar-with-dependencies files,
which can be commonly found on Maven Central and
can be generated with Maven, e.g., the assembly or the
shade plugin. Note that in contrast to type 1, these plugins
preserve the original bytecode, digest, and timestamp.

For Uber-JARs, we found two further sub-types.
Type 3 (bare Uber-JAR): In rare cases, multiple OSS

dependencies are merged into a Uber-JAR, but the pom.xml
files, the folders META-INF, and file timestamps are re-
moved. Since Maven’s shade and assembly plugin preserve
the pom.xml by default, this case is supposedly relevant for
legacy Uber-JARs built before the advent of these plugins,
e.g., with Ant.

Type 4 (re-packaged Uber-JAR): Similar to type 2, but
the Uber-JAR contains re-packaged classes, i.e., classes with
a string prepended to the original class name. Here, the
classes’ bytecode, digest, and timestamp are changed. Such
re-packaging can be configured with the Maven shade plu-
gin and is usually used to avoid name clashes.

We identified four types of modification: patched, Uber-
JAR, bare Uber-JARs, and re-packaged Uber-JARs.

6 PREVALENCE & IMPACT OF MODIFIED OSS
In this section, we address the research questions RQ4
and RQ5. Therefore, we investigate the prevalence of the
identified modifications on Maven Central and their impact
on the performance of vulnerability scanners.

6.1 RQ4: How prominent are the modifications outside
SAP?
To check that the observed modifications are not specific to
our data set, which is based on Java projects developed at
SAP , we computed their prevalence on Maven Central. As
a basis for detecting modifications, we used the vulnerable
open-source dependencies that we identified in RQ2. In par-
ticular, we investigated how often the vulnerable code of the
found vulnerable dependencies is subject to modification
types 1–4. To do so, we first identified which classes are
changed in the 96 commits fixing the 249 CVEs that we
identified in RQ2 (Section 5.2). Table 3 shows the prevalence
of type 1-4 modifications for the 254 vulnerable classes,
which we identified based on the 96 commits, from 38 open-
source dependencies hosted on Maven Central.

Type 1 (patched) Patching and forking an OSS usually
only changes a subset of the classes in a JAR. However, it
requires the re-compilation of all classes. To measure how
prevalent type 1 modifications are, we, thus, checked how
often the vulnerable classes (a subset of the classes in a JAR)
have been re-compiled on Maven Central. Note that we fail

Table 3: Prevalence of Modifications on Maven Central

Type 1 Type 2 Type 3 Type 4

classes subject to 143 222 222 17
affected GAV* 5,919 36,609 24,500 168
affected GA† 360 6,728 3,882 89
* GAV - distinct versions; † GA - distinct vendor, artifact

to identify an artifact as a form of modification type 1, if
during patching or forking the source-code of a class has
been modified such that its compiled bytecode differs so
much from the original, vulnerable bytecode that SootDiff’s
comparison fails. Thus, our results are only a lower bound.

Since re-compilation may change a class’ bytecode and
SHA1 but not the fully-qualified name (FQN), we used
the following approach. We checked how many classes on
Maven have identical FQN as the 254 vulnerable classes
and equivalent bytecode, according to SootDiff [34], but a
different SHA1. We found 50,702 artifacts on Maven Central
that contain a class with at least one FQN. Further, we found
for 143 (56%) of the 254 classes re-compiled versions on
Maven Central that have a different SHA1 but equivalent
bytecode. In total, we found such duplicates in 5,919 (11.6%)
artifacts. These artifacts spread across 360 distinct GAs.

Type 2 (Uber-JAR) Uber-JARs do not change the byte-
code nor the metadata, e.g., timestamp, SHA1, but only
merge the files contained in multiple JARs into a single
JAR. Consequently, to check the prevalence of Uber-JARs we
computed how frequently the vulnerable classes (same FQN
and identical SHA1) are copied into artifacts with distinct
GAs. We found that 36,609 artifacts on Maven Central con-
tained copies of the 254 vulnerable classes. We identified re-
bundling for 222 out of the 254 classes (87%) across 6,723 ar-
tifacts with different GA. Further, we found that commonly
classes are re-bundled in two or three artifacts with different
GAs (with quartiles Q1: 2, Q2: 2 Q3: 3), thus re-bundling of-
ten occurs within the same groupId and artifactId. However,
we also found at max that the class org.bouncycastle.-

math.ec.custom.sec.SecP256R1Curve was re-bundled in 27
artifacts with distinct GAs.

Type 3 (bare Uber-JAR) Further analysis showed that
3,882 (57%) out of those 6,723 artifacts do not contain a
pom.xml in the META-INF folder, and thus are bare.

Type 4 (re-packaged Uber-JAR) To avoid name-clashes
between classes, Uber-JARs may also re-package classes by
prepending a string to the original FQN before merging
them. Since the FQNs are embedded within a class’ byte-
code, the bytecode itself and the SHA1 also change.

To cope with changed bytecode, we checked how often
classes with an identical filename and nearly equal byte-
code, in terms of local-sensitive hash distances [36], are
contained in JARs with different GAs. We found that 16,665
artifacts contain a class with the same filename as a vulner-
able class but a different FQN, for 174 of the 254 classes. To
check if the bytecode is similar to one of a vulnerable class,
we compared the bytecode using SootDiff and computed
local-sensitive hashes (TLSH) [36]. If the TLSH distance was
lower than 20, we considered it as re-packaging. In total, we
found re-packaging for 17 classes in 89 distinct GAs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 9

Re-bundling, re-packaging, and re-compilation are
common in industrial and open-source projects. We
found that more than 87% of the checked classes are
re-bundled, and more than 56% are re-compiled on
Maven Central. Thus, vulnerabilities reported for one
OSS actually affect many other projects as well.

6.2 RQ5: What is the impact of the modifications on
vulnerability scanners?
To assess the impact of the identified modifications on the
performance of vulnerability scanners, we evaluate the per-
formance of the open-source vulnerability scanners OWASP
and Eclipse Steady, of GitHub Security Alert, and the com-
mercial scanners C1, C2, and C31 w.r.t. these modifications.

As test cases, we selected from the 20 most-used open-
source dependencies the seven that were themselves vul-
nerable, and selected their most recent vulnerabilities (cf.
Table 2). Table 4 shows the test cases that we used as
input. Column Reported By shows which scanners reported
them and column TP shows whether they are true- or false-
positives. As an example, all vulnerabilities for spring-core
are false-positives. Since we created the tests based on the
results of OWASP, Eclipse Steady, and C3, two of the scan-
ners reported the dependency as vulnerable but the manual
inspection showed that the vulnerabilities affect spring-web.

Table 4: Test Cases: Artifact, Vulnerability, Classification

Artifact Vulnerability TP Reported By
CVE-2012-6153 yes Steady, C3
CVE-2014-3577 yes Steady, OWASP, C3httpclient 4.1.3
CVE-2015-5262 yes Steady, OWASP, C3

CVE-2018-19362 yes Steady, OWASP, C3
CVE-2018-19361 yes Steady, OWASP, C3

jackson-databind
2.9.7 CVE-2018-19360 yes Steady, OWASP, C3

Steady, OWASP, C3
spring-webmvc
5.0.0.RELEASE

CVE-2018-1271 yes

CVE-2018-1258 no OWASP, C3
CVE-2018-11039 no OWASP
CVE-2018-1257 no OWASP

spring-core
5.0.5.RELEASE

CVE-2018-11040 no OWASP
CVE-2018-1270 yes Steady, OWASPspring-expression

5.0.4.RELEASE CVE-2018-1275 yes Steady, OWASP
CVE-2018-15756 yes Steady, OWASP, C3spring-web

5.0.5.RELEASE CVE-2018-11039 yes Steady, OWASP, C3
guava 23.0 CVE-2018-10237 yes Steady, OWASP, C3

We evaluated the vulnerability scanners’ performance
for the four modification types that we discovered in our
study (cf. Section 5.3). For all types, we used the same test
cases (cf. Table 4) but applied different modifications using
Achilles.
Unmodified All dependencies keep their original GAV,
their metadata is preserved, they are kept as separate JAR
files, and the bytecode is not modified, providing an anchor
for comparing the modifications’ impact.
Type 1 (patched) All dependencies get a slightly modified
GAV (appending the string fix or patch), the metadata is
preserved, they are kept as separate JAR files, but the classes
are re-compiled.
Type 2 (Uber-JAR) All dependencies are merged into a sin-
gle Uber-JAR with a random GAV, the metadata of the
original artifacts is preserved, and the original bytecode and
the timestamps of the original files are untouched.

Type 3 (bare Uber-JAR) All dependencies are merged into
a single Uber-JAR with a random GAV, all metadata is
removed (manifest files, pom.xml), the original classes are
kept, but the timestamps of the files are updated.
Type 4 (re-packaged Uber-JAR) All dependencies are
merged into a single Uber-JAR with a random GAV, the
metadata is kept, and the original classes are re-packaged
changing the bytecode and the class-files timestamps.

For each type, we generated the modified JAR file(s) and
a Maven project (pom.xml) declaring the respective GAV(s)
as dependencies. Then we executed the vulnerability scan-
ners on each project and computed their precision, recall,
and F1-score. Table 5 shows the results. The table shows that
the scanners heavily differ even for unmodified JARs. The
commercial scanner C2 does not find any vulnerabilities in
types 1–4, and thus, seems to be unable to deal with mod-
ifications at all. GitHub Security Alerts does not find any
vulnerabilities in types 2–4, and detects the same vulnerabil-
ities for unmodified and type 1 JARs. C3 performs similar to
GitHub Security Alerts but with higher precision and recall.
Based on Table 5, Security Alerts, C2, and C3 seem to rely
heavily on metadata to detect vulnerable artifacts, as they
do not detect vulnerabilities in types 2–4.

The results further show that the commercial scanner C1
fails to detect vulnerabilities in type 4. OWASP and C1 are
the only scanners reporting vulnerabilities in type 4. Eclipse
Steady performs best for unmodified JARs. The table shows
that Eclipse Steady performs better for type 2 and 3 than
for type 1. Thus, re-compilation and patching decrease the
performance more than lost or modified metadata.

Note that Achilles is based on the results obtained from
OWASP, Eclipse Steady, and C3. The fact that Eclipse Steady
achieves perfect precision and recall for unmodified JARs
means that all findings that we use in the case study were
marked as true-positives in the manual review, and there
were no false-negatives w.r.t. the findings of OWASP, and
C3. However, the results show that the performance of all
scanners heavily decreases with the modifications.

All scanners struggle to identify vulnerable dependen-
cies if the JAR files are modified (type 1-4).

7 DISCUSSION

In the following, we summarize and discuss the observa-
tions that we made in our study. To do so, we link them to
previous studies, where applicable.
Vulnerable OSS The results for RQ1 and RQ2 emphasize
that the use of OSS is established practice, even in indus-
trial applications. This aligns with previous studies [1], [8],
[10], [14], [17], which studied the use of vulnerable OSS in
industrial and open-source applications.

Remarkably, the amount of vulnerable dependencies,
which we identified, is lower than the amount presented in
the studies [1], [8] who state that each application contains
22.5 different vulnerabilities on average and 81.5% of the
applications use outdated dependencies.
Scalability The results for RQ1 show that the number of
dependencies heavily differs per project, ranging from 0 to
228. Additionally, RQ1 shows that vulnerability scanners
must not only check dependencies with the scope compile

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 10

Table 5: Vulnerability Scanners’ metrics for Type 1–4; * used in the construction of the test cases; bold the highest score

Unmodified Type 1 (patched) Type 2 (Uber-JAR) Type 3 (bare Uber-JAR) Type 4 (re-pack. Uber-JAR)

precision recall F1 precision recall F1 precision recall F1 precision recall F1 precision recall F1

OWASP* 0.34 0.92 0.50 0.35 0.92 0.51 0.17 0.17 0.17 – 0.17 0.17 0.17
Eclipse Steady* 1.00 1.00 1.00 0.38 0.75 0.50 0.41 0.75 0.53 0.41 0.75 0.53 –
Security Alerts 0.60 0.50 0.55 0.60 0.50 0.55 – – –
C1 0.64 0.58 0.61 0.32 0.58 0.41 0.34 0.96 0.51 – 0.78 0.58 0.67
C2 0.75 0.75 0.75 – – – –
C3* 0.71 0.83 0.77 0.71 0.83 0.77 – – –

but also must check all release (transitive) dependencies as
they constitute a relevant share. Previous studies [1], [8],
[14], which point out the importance of transitive depen-
dencies, validate this observation.
Detection Performance The classification in RQ2 shows that
vulnerability scanners tend to produce a large number of
false-positives, as only 859 from 2,505 findings are true-
positives. While in an early development phase, updating
a dependency is relatively unproblematic, whereas updates
during the release or the operational lifetime impact the
schedule, may cause downtimes, or introduce unexpected
defects [4], [11]. Thus, the number of false-positive must be
kept low. Similarly, RQ5 shows that scanners highly divert
in performance even for unmodified OSS.
Modified JAR Files A major finding in RQ3 and RQ4 is
the fact that industrial applications, as well as open-source
projects, include modified OSS. Since the modifications re-
packaging, re-bundling, re-compilation, Uber-JARs, modify
a dependency’s metadata, e.g., GAV, digest, as well as the
code, they pose a major challenge for vulnerability scanners.

RQ5 shows that current scanners struggle to identify
vulnerabilities in modified OSS. Only the scanners C2 and
Eclipse Steady provide reasonable results in the presence
of re-compilation and lost metadata. Since RQ3 and RQ4
show that all modifications (type 1–4) occur at SAP and
Maven Central, future development must address the re-
lated challenges. The case study shows that all scanners
need to improve further w.r.t. their performance, especially
concerning the modification types 3 and 4. Remarkably, our
case study shows that – even the vulnerability scanners
used in the construction of the test cases – fail to deal with
Modified JAR Files.

8 ACHILLES - TEST SUITE

As, to the best of our knowledge, no test suite exists to repli-
cate challenges for vulnerability scanners, we developed
Achilles. Achilles allows replicating the challenges Detection
Performance and Modified JAR Files for evaluating the per-
formance of vulnerability scanners. Therefore, Achilles pro-
vides the options to include (vulnerable) OSS dependencies,
remove vulnerable classes, and apply the modifications 1–4.
As an input Achilles uses a set of GAVs and a ground truth,
stating the vulnerabilities. With Achilles, we provide 2,505
test cases and ground truth, derived from our study.

Since benchmarks play a strategic role in computer sci-
ence research and development by providing a ground truth
for evaluating algorithms and tools, we constructed Achilles
based on the following criteria, introduced by the wide-
spread DaCapo benchmark [28].

Diverse real-world applications: The test cases should
not consist of artificially created programs. Instead, the
benchmark should contain dependencies and vulnerabilities
collected from real-world projects to provide a compelling
focus for evaluating real-world usage.
Detecting vulnerable OSS (precision and recall): The test
cases and ground truth should enable measuring if a vulner-
ability scanner successfully detects included dependencies
with published vulnerabilities (recall) and to what extent a
scanner raises false warnings (precision).
Automation and ease of use: The test cases should be in
a format consumable by vulnerability scanners and enable
the measurement of their accuracy.

In the following, we explain how Achilles implements
these criteria, its organization, and its use.

8.1 Diverse real-world application
To closely resemble real-world applications, we directly
select the test cases from our study. We thus choose as test
data the 2,505 findings from RQ2 for the 723 artifacts and
249 distinct vulnerabilities, which we (semi-)automatically
classified into true- and false-positives (cf. Section 5.2).
Further, test cases can be easily added as JSON files.

As we identified that the same open-source dependen-
cies are also used in the open-source community, the test
cases not only replicate the settings at SAP but also in open-
source projects.

To account for the identified modifications, Achilles al-
lows to apply these modifications to the test data before
serving them as input to a vulnerability scanner.

8.2 Detecting vulnerable OSS
For evaluating a vulnerability scanner’s precision and recall,
each test case is specified as a human-readable JSON file,
stating the published vulnerability, the (affected) GAV, a
short description, and the ground truth. Moreover, each test
case also contains a timestamp specifying when the ground
truth was updated. Listing 1 shows exemplary a test case
for the vulnerability CVE-2016-3720.
1 "cve": "CVE-2016-3720", "timestamp": "2018-11-30",
2 "gav": {"version": "2.4.3", ,"artifactId":

"jackson-dataformat-xml", "groupId":
"com.fasterxml.jackson.dataformat"},

3 "vulnerable": true, "comment" :"XML Injection",
"details": [{"contained": true, "affectedFile":
"com/fasterxml/jackson/dataformat/xml/XmlFactory.class",

4 "fqn": "com.fasterxml.jackson.dataformat.xml.XmlFactory"}]

Listing 1 Test (jackson-dataformat-xml, CVE-2016-3720)

Optionally, a test case also contains the FQN of the vul-
nerable methods, classes, the commit, as well as SootDiff’s

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 11

result if the artifact contains the vulnerable bytecode – we
could identify 96 source-code commits and included the
SootDiff’s results (cf. Section 5.2).

8.3 Automation and ease of use

Achilles provides a graphical user interface to compose a
consumable Maven project (pom.xml), the ground truth,
and for applying the modifications.

For applying Achilles to evaluate the performance of a
vulnerability scanner the process is as follows. First, users
select the test cases (vulnerabilities and GAVs) that they
want to use. Next, users choose if the JAR files should be
modified. Building on top of the four types of modifications
identified in RQ3, users can choose the following options,
shown in Figure 3 as a feature diagram:
GAV To evaluate to what extent vulnerability scanners are
resilient to simple changes in the GAV (type 1) or to a novel
GAV due to re-bundling (type 1–4): the original GAV can be
kept, can be modified by appending a version suffix (e.g.,
the string -fix-01) or replaced by a random GAV.
Metadata To evaluate to what extent name-based scanners
are resilient to modified metadata (type 3): the metadata, in
particular the pom.xml file in the META-INF folder, can be
removed or maintained.
JAR To encompass Uber-JAR (type 2–4): all artifacts can be
kept as separate JAR files, or bundled into a single Uber-
JAR. Optionally, the original timestamps of the files in the
JAR can be kept, when re-bundling or re-compiling them.
Classes To encompass re-compilation (type 1, 4): the original
class-files can be copied, the source-code can be re-compiled
using the original FQN, or the classes can be re-package by
prepending the string com.repackage to each FQN.
Vulnerable Code Optionally, Achilles can remove the vul-
nerable classes from a JAR file. This can be used to evaluate
if a vulnerability scanner correctly checks whether the vul-
nerable code is contained in a given JAR.
By default Achilles applies the settings highlighted in Fig-
ure 3, producing unmodified JAR files.

Test Case

GAV

Original

Metadata

RandomModify

Keep Remove

Jar

Single Uber-
JARClasses

Original
Re-Package

Re-
Compile

Modification Vuln. Code

Keep Remove

Keep
TSTP

requires

Figure 3: Achilles Feature Diagram - Test Case Generation;
highlighted are the default settings (unmodified JAR)

Based on the chosen configuration, Achilles creates a
Maven project consisting of a pom.xml with the (modified)
JAR files as dependencies. The generated project can be used
directly as an input for a vulnerability scanner. To measure
a scanner’s precision and recall, its findings are compared
with the ground truth.

8.4 Organization and Distribution

To allow the community to extend Achilles and provide
further test cases, we distribute Achilles publicly on GitHub.2

9 THREATS TO VALIDITY

9.1 Use of OSS at SAP

Since we conducted our study on projects developed at
SAP , the applicability to industrial Java projects, in general,
is limited as the impact of development practices, tools, and
guidelines must be evaluated. The studied projects already
apply Eclipse Steady, which may bias our results, as the
development teams may update dependencies regularly.
Nevertheless, SAP is one of the world’s leading software de-
velopment companies, with a diverse product portfolio and
our study aligns with previous open-source and industrial
case studies [1], [8], [10], [12], [14], [17]. Additionally, the 20
most-used dependencies are also popular within the open-
source community (cf. Section 4.2), and the modifications
also occur on Maven, indicating that our results are also
applicable to other – particularly to open-source – projects.

Our decision to check vulnerabilities for the 20 most-
used OSS and the choice of the scanners influences the
number of findings, false-positive, and false-negative. Since
we semi-manually classified the 2,505 findings to achieve
soundness, we had to restrict ourselves. To limit the like-
lihood of false-negative, we used the scanners Steady,
OWASP, and C3. They apply different matchings: name-
based vs. code-based; and rely on different databases:
Steady’s Database [37], NVD [19], and a commercial
database. All scanners and databases are continuously up-
dated and cannot guarantee the absence of false-negative or
false-positives. Thus, the absolute number of false-positives
may differ with the chosen scanners. Nevertheless, our
results regarding the use of vulnerable OSS and the ratio
of false-positives align – or are even less – than reported by
previous studies [1], [8], [10], [14].

9.2 Prevalence & Impact of modified OSS

The prevalence of the modifications is based on the vulner-
able classes that we identified in RQ2. This selection may
be inaccurate because we do not know how often these
vulnerable classes are re-compiled or re-bundled compared
to other classes, e.g., if the found classes are more often
or rarely re-bundled. Hence, our results may under- or
over-approximate but still show that these modifications
are popular on Maven Central and must be addressed by
vulnerability scanners.

A potential pitfall is the fact that the evaluated vulnera-
bility scanners Steady, OWASP, and C3 were also used in the
creation of Achilles. Although we semi-manually classified
the 2,505 findings to ensure soundness, we cannot ensure
completeness, as false-negatives (findings missed by all
scanners) may occur.

A bias towards Eclipse Steady may only occur in the case
of unmodified JAR, as the tests used to create the benchmark
were confirmed as correct during the semi-manual review.
For modified OSS, instead, the generator creates new de-
pendencies with new metadata, e.g., digest, GAV. As the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 12

modified dependencies are unknown to all scanners, they
allow fair comparison.

The relevance of modifications is independent of any
particular scanner, as even the scanners used in the con-
struction fail – to different degrees – to deal with modified
JARs. Especially, the good performance of C1 for type 4
shows that the study does not favor the scanners that have
been used in Achilles’ creation. Foremost, the results show
that the performance of all scanners heavily decreases with
modification, and must be addressed in the future.

10 CONCLUSION

The paper presents a case study investigating the use of
(modified) vulnerable OSS and their impact on vulnerability
scanners. We conducted a case study on 7,023 Java projects
developed at SAP regarding the use of OSS. We found
that the majority of dependencies (86%) are OSS, and that
most dependencies are included transitively (79%). The
(in)security of OSS is thus a major issue for Java projects.
Further, our study shows that modified OSS, compromising
re-compiled, re-packaged, or re-bundled classes from other
open-source projects, commonly occur on Maven Central.

We found that such modifications heavily decrease the
precision and recall of vulnerability scanners by checking
the performance of the open-source scanners Dependency-
Check and Eclipse Steady, GitHub Security Alerts as well as
three commercial tools. The results show that all vulnerabil-
ity scanners struggle to cope with modified OSS, and that
further research and development are needed.

To facilitate comparisons w.r.t. the identified modifica-
tions, we present Achilles – a novel test suite for evaluat-
ing the performance of vulnerability scanners. Achilles is
comprised of 2,505 test cases, directly derived from our
case study. Achilles is the first test suite designed to foster
research and development by enabling evaluation and com-
parison of vulnerability scanners. Achilles is publicly avail-
able, evolving, and open for feedback and contributions.

REFERENCES

[1] M. Pittenger, “The State of Open Source Security in Commercial
Applications,” Black Duck Software, Tech. Rep., 2016.

[2] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and
M. Irlbeck, “On the extent and nature of software reuse in open
source java projects,” in Proceedings of the 12th International Confer-
ence on Top Productivity through Software Reuse, ser. ICSR’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 207–222.

[3] V. Bauer, L. Heinemann, and F. Deissenboeck, “A structured
approach to assess third-party library usage,” in Proceedings of
the 2012 IEEE International Conference on Software Maintenance, ser.
ICSM’12. USA: IEEE Computer Society, 2012, p. 483–492.

[4] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“How the Apache community upgrades dependencies: an evolu-
tionary study,” Empirical Software Engineering, vol. 20, no. 5, pp.
1275–1317, oct 2015.

[5] Forbes, “Equifax,” feb 2017. [Online]. Avail-
able: https://www.forbes.com/sites/thomasbrewster/2017/09/
14/equifax-hack-the-result-of-patched-vulnerability/

[6] B. Krebs. (2018) Equifax Breach. [Online]. Available: https:
//krebsonsecurity.com/tag/equifax-breach/

[7] NVD. (2017, feb) Cve-2017-5638. [Online]. Available: https:
//nvd.nist.gov/vuln/detail/CVE-2017-5638

[8] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, feb 2018.

[9] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment
and mitigation of vulnerabilities in open source dependencies,”
Empirical Software Engineering, vol. 25, no. 5, pp. 3175–3215, 2020.

[10] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-
source software,” in Proceedings of the 16th International Conference
on Mining Software Repositories, ser. MSR ’19. IEEE Press, 2019, p.
383–387.

[11] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-
centric and usage-based analysis of known vulnerabilities in open-
source software,” in 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, Madrid, Spain, September
23-29, 2018. IEEE Computer Society, 2018, pp. 449–460.

[12] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4Real: A Methodology for Counting Actually Vulnerable
Dependencies,” IEEE Transactions on Software Engineering, 2020.

[13] SourceClear. (2020) Evaluation framework for dependency
analysis. [Online]. Available: https://github.com/srcclr/efda

[14] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that mat-
ter,” in Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’18.
New York, NY, USA: ACM, 2018.

[15] Sonatype. (2020, feb) Central download statistics for OSS projects.
[Online]. Available: https://blog.sonatype.com/2010/12/now-
available-central-download-statistics-for-oss-projects/

[16] BlackDuck, feb 2020. [Online]. Available: https://www.
blackducksoftware.com/technology/vulnerability-reporting

[17] J. Williams and A. Dabirsiaghi, “The unfortunate reality of inse-
cure libraries,” Constrast Security, Tech. Rep., 2014.

[18] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “DéjàVu: a map of code duplicates on GitHub,”
Proceedings of the ACM on Programming Languages, vol. 1, no.
OOPSLA, pp. 1–28, oct 2017.

[19] NIST. (2020) Nvd. [Online]. Available: https://nvd.nist.gov/
[20] V. H. Nguyen and F. Massacci, “The (un)reliability of NVD vulner-

able versions data: An empirical experiment on Google Chrome
vulnerabilities,” in ASIA CCS 2013 - Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications
Security. New York, New York, USA: ACM Press, 2013, pp. 493–
498.

[21] Pivotal Software. (2020, Dec) CVE-2018-1271. [Online]. Available:
https://pivotal.io/security/cve-2018-1271

[22] OffSec Services, “Exploit database,” feb 2020. [Online]. Available:
https://www.exploit-db.com/

[23] GitHub, “Security alerts,” feb 2020. [Online]. Avail-
able: https://help.github.com/articles/about-security-alerts-for-
vulnerable-dependencies/

[24] G. Nilson, K. Wills, J. Stuckman, and J. Purtilo, “Bugbox: A
vulnerability corpus for PHP web applications,” in Presented as
part of the 6th Workshop on Cyber Security Experimentation and Test.
Washington, D.C.: USENIX, 2013.

[25] NIST. (2018) Samate - software assurance metrics and tool
evaluation. [Online]. Available: https://samate.nist.gov/

[26] B. Livshits. (2012) Securibench. [Online]. Available: https:
//suif.stanford.edu/∼livshits/securibench/

[27] NIST. (2017, oct) Juliet test suite. [Online]. Available: https:
//samate.nist.gov/SARD/testsuite.php

[28] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The dacapo benchmarks: Java benchmarking
development and analysis,” SIGPLAN Not., vol. 41, no. 10, pp.
169–190, Oct. 2006.

[29] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas Corpus: A Curated Col-
lection of Java Code for Empirical Studies,” in 2010 Asia Pacific
Software Engineering Conference. IEEE, nov 2010, pp. 336–345.

[30] J. Dietrich, H. Schole, L. Sui, and E. Tempero, “XCorpus - An
executable corpus of Java programs,” Journal of Object Technology,
vol. 16, pp. 1–24, 2017.

[31] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, apr 2009.

[32] MvnRepository. (2020, feb) 100 popular projects. [Online].
Available: https://mvnrepository.com/popular

https://www.forbes.com/sites/thomasbrewster/2017/09/14/equifax-hack-the-result-of-patched-vulnerability/
https://www.forbes.com/sites/thomasbrewster/2017/09/14/equifax-hack-the-result-of-patched-vulnerability/
https://krebsonsecurity.com/tag/equifax-breach/
https://krebsonsecurity.com/tag/equifax-breach/
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://github.com/srcclr/efda
https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/
https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/
https://www.blackducksoftware.com/technology/vulnerability-reporting
https://www.blackducksoftware.com/technology/vulnerability-reporting
https://nvd.nist.gov/
https://pivotal.io/security/cve-2018-1271
https://www.exploit-db.com/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://samate.nist.gov/
https://suif.stanford.edu/~livshits/securibench/
https://suif.stanford.edu/~livshits/securibench/
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://mvnrepository.com/popular

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 13

[33] SAP. (2020, feb) Vulnerability Assessment Knowledge Base.
https://github.com/SAP/project-kb.

[34] A. Dann, B. Hermann, and E. Bodden, “Sootdiff: Bytecode com-
parison across different java compilers,” in Proceedings of the 8th
ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, ser. SOAP 2019. New York, NY, USA: ACM, 2019, pp.
14–19.

[35] H. Sajnani, V. Saini, J. Ossher, and C. V. Lopes, “Is Popularity a
Measure of Quality? An Analysis of Maven Components,” in 2014
IEEE International Conference on Software Maintenance and Evolution,
sep 2014, pp. 231–240.

[36] J. Oliver, C. Cheng, and Y. Chen, “TLSH – A Locality Sensitive
Hash,” in 2013 Fourth Cybercrime and Trustworthy Computing Work-
shop. IEEE, nov 2013, pp. 7–13.

[37] Eclipse. (2020) Steady. [Online]. Available: https://projects.
eclipse.org/projects/technology.steady

Andreas Dann is a Ph.D. student in the secure
software engineering research group at Pader-
born University. His research focuses on the de-
tection, assessment, and mitigation of security
vulnerabilities in open-source dependencies by
leveraging static analysis techniques and algo-
rithms. He is a main contributor to the open-
source static analysis frameworks Soot. He re-
ceived his M.Sc. in Computer Science from
Paderborn University in 2016.

Henrik Plate is a senior researcher at SAP Se-
curity Research. Recent work focuses on the se-
cure consumption of open-source software and
software supply chain attacks. He is project lead
and co-author of Eclipse Steady, an open-source
solution combining static and dynamic analysis
techniques to detect, assess and mitigate known
vulnerabilities in software dependencies. He per-
forms security and architecture due diligence for
mergers and acquisitions, and holds a CISSP
certification. Prior to joining research, he held

different developer positions after receiving his M.Sc. in Computer Sci-
ence and Business Administration from the University of Mannheim in
1999.

Ben Hermann is an assistant professor at the
Technical University of Dortmund. He works on
evolutionary software security and has been the
author of several works in the field of static pro-
gram analysis. Prof. Hermann worked on several
static analysis frameworks including PhASAR,
Soot, and OPAL and has significant experience
in engineering these frameworks and the analy-
ses build on top of them. He received his doctor-
ate degree from the University of Darmstadt for
his work on Java security.

Serena Elisa Ponta is a senior researcher at
SAP Security Research. Her current research
focuses on open source security and the secure
consumption of open source software compo-
nents. She is one of the co-authors of Eclipse
Steady, a solution for the detection, assessment
and mitigation of known vulnerabilities in open
source software libraries. Prior to joining SAP,
she obtained her Ph.D. in Mathematical Engi-
neering and Simulation from the University of
Genova in 2011 and her M.Sc. in Computer En-

gineering from the same university in 2007.

Eric Bodden is a full professor for Secure Soft-
ware Engineering at the Heinz Nixdorf Institute
of Paderborn University, Germany. He is further
the director for Software Engineering and IT
Security at the Fraunhofer Institute for Mecha-
tronic Systems Design. Prof. Bodden has been
recognized several times for his research on
program analysis and software security, most
notably with the German IT-Security Price and
the Heinz Maier-Leibnitz Price of the German
Research Foundation, as well as with several

distinguished paper and distinguished reviewer awards. He is also an
ACM Distinguished Member.

https://projects.eclipse.org/projects/technology.steady
https://projects.eclipse.org/projects/technology.steady

	1 Introduction
	2 Background & Terminology
	3 Related Work
	3.1 Studies: Use of Vulnerable OSS
	3.2 OSS Vulnerability Databases & Scanners
	3.3 Vulnerability Benchmarks

	4 Study Design
	4.1 Research Questions
	4.2 Study Objects & Methodology
	4.2.1 Studied Projects & Project Metric Extraction
	4.2.2 Dependency Selection
	4.2.3 Vulnerable Dependency Identification
	4.2.4 Identification of Modifications on Maven Central

	5 Use of OSS at SAP
	5.1 RQ1: What are the practices in using OSS at SAP?
	5.2 RQ2: What vulnerabilities affect the most-used dependencies?
	5.3 RQ3: How do developers include OSS?

	6 Prevalence & Impact of modified OSS
	6.1 RQ4: How prominent are the modifications outside SAP?
	6.2 RQ5: What is the impact of the modifications on vulnerability scanners?

	7 Discussion
	8 Achilles - Test Suite
	8.1 Diverse real-world application
	8.2 Detecting vulnerable OSS
	8.3 Automation and ease of use
	8.4 Organization and Distribution

	9 Threats to Validity
	9.1 Use of OSS at SAP
	9.2 Prevalence & Impact of modified OSS

	10 Conclusion
	References
	Biographies
	Andreas Dann
	Henrik Plate
	Ben Hermann
	Serena Elisa Ponta
	Eric Bodden

