
Total Recall? How Good Are Static Call Graphs Really?
Dominik Helm

ATHENE
Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
helm@cs.tu-darmstadt.de

Sven Keidel
Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany

Anemone Kampkötter
Department of Computer Science
Technische Universität Dortmund

Dortmund, Germany
anemone.kampkoetter@tu-

dortmund.de

Johannes Düsing
Department of Computer Science
Technische Universität Dortmund

Dortmund, Germany
johannes.duesing@tu-dortmund.de

Tobias Roth
ATHENE

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
roth@cs.tu-darmstadt.de

Ben Hermann
Department of Computer Science
Technische Universität Dortmund

Dortmund, Germany
ben.hermann@cs.tu-dortmund.de

Mira Mezini
ATHENE
hessian.AI

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
mezini@cs.tu-darmstadt.de

ABSTRACT
Static call graphs are a fundamental building block of program anal-
ysis. However, differences in call-graph construction and the use of
specific language features can yield unsoundness and imprecision.
Call-graph analyses are evaluated using measures of precision and
recall, but this is hard when a ground truth for real-world programs
is generally unobtainable.

In this work, we propose to use carefully constructed dynamic
baselines based on fixed entry points and input corpora. The cre-
ation of this dynamic baseline is posed as an approximation of the
ground truth—an optimization problem. We use manual extension
and coverage-guided fuzzing for creating suitable input corpora.

With these dynamic baselines, we study call-graph quality of
multiple algorithms and implementations using four real-world
Java programs. We find that our methodology provides valuable
insights into call-graph quality and how to measure it. With this
work, we provide a novel methodology to advance the field of static
program analysis as we assess the computation of one of its core
data structures—the call graph.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Dynamic analysis; • Theory of computation → Program analysis.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652114

KEYWORDS
Call Graph, Static Analysis, Dynamic Analysis, Precision, Recall

ACM Reference Format:
Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, To-
bias Roth, Ben Hermann, and Mira Mezini. 2024. Total Recall? How Good
Are Static Call Graphs Really?. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’24), Sep-
tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650212.3652114

1 INTRODUCTION
Static call graphs (CGs) are a prerequisite for all interprocedural
static analyses. But state-of-the-art static CG analyses [5, 14, 15, 19,
30] suffer from unsoundness and imprecision. Since the quality of
many downstream analyses depends heavily on CG analyses [4], it
is important to assess the quality of CGs in terms of precision and
recall. Precision is the percentage of calls in the static CG that can
be executed at runtime. Recall is the percentage of calls executable
at runtime that occur in the static CG. In order to measure these
two metrics, a ground-truth CG is necessary. Constructing such a
ground truthwould entail capturing all possible program executions
which is an undecidable problem [22]. In lack of a ground truth,
researchers have utilized three kinds of alternative approaches.

Firstly, prior work relied on micro-benchmarks [20, 23, 26] con-
sisting of small programs that exercise individual language features
and respective hand-crafted CGs. Static CG analyses are executed
on the benchmarks and their results compared against the hand-
crafted ones to gauge how well language features are covered. How-
ever, such micro-benchmarks (by construction) lack insights into a
CG’s recall for real-world programs. A single commonly used, hard
to analyze language feature like reflection might disproportionately

https://orcid.org/0009-0004-6425-8630
https://orcid.org/0000-0002-4278-2181
https://orcid.org/0000-0003-4286-714X
https://orcid.org/0000-0002-9367-2206
https://orcid.org/0000-0001-6561-0430
https://orcid.org/0000-0001-9848-2017
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.1145/3650212.3652114
https://doi.org/10.1145/3650212.3652114

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth, Ben Hermann, and Mira Mezini

affect the recall of static CGs of real-world programs. Secondly,
prior work compared the size of CGs constructed by different algo-
rithms [11, 25, 29]. A CG containing fewer calls than another one is
typically considered more precise. Unfortunately, this differential
measure fails to quantify the actual precision of CGs. A smaller
CG is not necessarily more precise—the smaller size could also
be a result of lower recall. Thirdly, a better approach to measure
precision and recall is to approximate the ground truth by dynamic
baselines [2, 16, 27, 28]. The program under analysis is executed
and dynamic CGs are constructed from recorded execution traces,
which then act as baselines for assessing static CGs.

Approaches relying on dynamic baselines involve decisions
about the program entry points to execute and about the number of
traces that are enough for a sufficiently exhaustive baseline. Some
existing approaches rely on benchmark programs [1, 16], others
use existing test suites [2, 28], or synthesized tests [27] to exercise
the target programs. However, we lack a systematic investigation of
the relationship between static CGs and dynamic baselines. Using
a high-coverage dynamic baseline might yield an inaccurately low
recall. This is because the construction of static CGs typically starts
at specific entry points and a high-coverage dynamic baseline may
contain calls not reachable from these points. Conversely, using a
low-coverage dynamic baseline that lacks calls reachable from the
entry points may yield inaccurately low precision.

These observations indicate that we need a systematic investiga-
tion of the relationship between static CGs and dynamic baselines
to understand what makes dynamic baselines good approximations
of a ground-truth CG. This is where this paper contributes to the
state of the art in computing baseline CGs: We record dynamic base-
lines exclusively for predetermined program entry points, frame the
creation of dynamic baselines from these points as an optimization
problem, and approximate the solution to this optimization problem
by systematically expanding the corpus of input data supplied to the
entry points. This strategy enables us to (a) approximate a dynamic
baseline from the same entry points used for computing static CGs,
facilitating a more accurate comparison, and (b) make well-defined
decisions about the values and number of inputs to use.

Specifically, we apply three techniques to generate inputs for
the entry points: First, we assemble an input corpus from publicly
available sources (e.g., test or fuzzing corpora). Second, we inspect
the coverage of this corpus and manually add inputs to cover yet
uncovered code that is reachable from entry points. Third, we
expand the input corpus with a coverage-based fuzzer. The fuzzer
generates new inputs based on existing inputs and adds them to
the corpus if the execution with the new input covers new parts of
the program. To our knowledge, we are the first to apply coverage-
based fuzzing for this purpose.

In essence, our method allows us to construct dynamic baselines
that systematically approximate the unattainable ground truth for
static CGs, while staying within the theoretical bounds of reacha-
bility from the specified entry points. Notably, we show that the
precision and recall metrics for a static CG measured relative to
our dynamic baselines establish bounds for the hypothetical pre-
cision and recall measured against the unattainable ground-truth
CG. These bounds improve as the input corpus gets expanded as
described above, turning the question of good and sufficient inputs
into an optimization problem.

We used our approach to benchmark eight CG analysis imple-
mentations in four static program analysis frameworks. on four
distinct Java programs (axion, batik, jasml, and xerces) from
XCorpus [9]. Our study yields two key findings: Firstly, the size
of a static CG is not a reliable predictor of its quality. Secondly,
theoretical characteristics of CG algorithms can be misleading and,
for the same conceptual algorithm, the framework of choice may
have a significant impact on the quality. Also, observations about
the quality of static CGs on some programs may not generalize
to other programs. As a consequence, the decision about a CG
algorithm to use in a particular case should be based on actually
measuring the precision and recall of specific implementations of
specific algorithms, if possible from multiple frameworks, for that
specific use case. This, in turn, reinforces the importance of reliable
methods for measuring CG quality.

In summary, we make the following contributions:
• We systematically explore the relationship between static and
dynamic CGs that approximate the ground truth for measuring
precision and recall. Based on this exploration, we propose a
novel method for capturing dynamic baseline CGs, which uses
predetermined entry points and frames the search for an accu-
rate baseline as an optimization problem (Section 3).

• We propose an approach for measuring precision and recall
of static CGs that uses the new method for dynamic baselines
(Section 4). Crucially, we propose a new method for generating
an input corpus for entry points that enables to systematically
explore the solution to the optimization problem.

• We use our method for constructing dynamic baselines to bench-
mark eight implementations of CG analyses on four Java pro-
grams from XCorpus. The study provides insights into the qual-
ity of current CG analyses and underlines the importance of
well-grounded methods for measuring CG quality (Section 5).

2 STATE OF THE ART
There are three main approaches to assess CG quality: micro-
benchmarks, CG size, and dynamic baselines.

Micro-Benchmarks. To study the soundness of static CGs, prior
work relied on hand-crafted micro-benchmark suites [20, 23, 26].
The latter consist of small programs, crafted to exercise individ-
ual language features. The authors run static CG analyses on the
benchmarks and check if the resulting CGs contain the expected
calls. Such micro-benchmarks are effective at uncovering sources
of unsoundness, but do not provide any indication of what the
concrete recall and precision of CG analyses are. Specifically, it
is unclear what impact an unsoundly or imprecisely handled lan-
guage feature has on the CG of real-world programs. For example,
the Python Call Graph analysis PyCG [23] passes 103 of 112 (92%)
micro-benchmark tests, yet the recall measured on five real-world
applications is only 70%. This demonstrates the mismatch between
the number of false-negatives on a micro-benchmark and the re-
call measured on real-world apps for which the authors created
reference CGs by hand in a time-consuming process.

Call-Graph Size. Some authors compare CGs by their relative
sizes to draw conclusions on relative precision, based on the number
of reachable methods or call edges: if one CG contains fewer calls

Total Recall? How Good Are Static Call Graphs Really? ISSTA ’24, September 16–20, 2024, Vienna, Austria

than another one, it is considered more precise. Such quantitative
measures are sometimes complemented by qualitative studies.

Ali and Lhoták [1] compare CG quality based on the number
of call edges among other criteria, with smaller, supposedly more
precise CGs considered better. Smaragdakis et al. [25] and He et al.
[13] consider the number of call edges and sizes of points-to-sets
to evaluate the precision of points-to analyses. Reif et al. [20] also
compare the number of reachable methods to discuss CG precision
when evaluating different CG construction frameworks. Lhoták [16]
compares CGs based on the number of call edges and reachable
methods, claiming that these are the usual features when com-
paring CG analysis precision and suggests supplementing such
quantitative metrics with qualitative assessment. Tip and Palsberg
[29] and Gutzmann et al. [12] examine different metrics about CGs,
including the numbers of reachable methods and edges in the CG.

In Section 5.4, we show that CG size is not a reliable measure for
CG quality.

Dynamic Baselines. Chakraborty et al. [7] measure the recall of
JavaScript static CG analyses using a dynamic baseline. They man-
ually exercise JavaScript GUI applications and record call edges,
call-site targets, and reachable methods to identify dynamic lan-
guage features causing unsound CGs. They use a single program
execution each and recognize that this is problematic, with some
code reachable only on repeated execution. Similarly, to evaluate
static CGs, Luo et al. [17] consider a dynamic baseline for which
they manually exercise programs to record executed methods, but
not full CGs.

Both Lhoták [16] and Ali and Lhoták [1] use an executable bench-
mark to record a dynamic baseline. Sui et al. [27] propose recording
a dynamic baseline to evaluate static CGs by using built-in and
synthesized test cases from the Xcorpus [9] data set. Utilizing these
tests, they exercise the analyzed programs to cover as many execu-
tion paths as possible, achieving a median branch coverage of ∼55%.
They explicitly consider only reachable methods to calculate recall.
Similarly, Antal et al. [2] use a dynamic baseline constructed by ex-
ecuting tests to perform a comparative study of static and dynamic
CG analyses, which they complement with a manual qualitative
analysis to validate specific call edges. Ságodi et al. [28] also use a
test-based dynamic baseline to investigate the differences between
static and dynamic CGs. They argue that dynamic CGs captured
via test execution cannot provide a reliable baseline because they
fail to account for code segments that remain unexercised by the
available tests.

Current approaches for constructing baselines all depend on a
specific benchmark or test harness. We argue that using dynamic
baselines constructed by running tests leads to imprecise precision
and recall measurements (cf. Section 3.3). Dynamic call graphs con-
structed in this manner can both overestimate and underestimate
the actual behavior of the program at the same time.

3 NEWMETHOD FOR DYNAMIC BASELINES
We formally define the ground-truth CG and approximations thereof
by dynamic baselines. On that basis, we reason about issues with
approaches that approximate the ground truth via dynamic base-
lines captured by running tests and/or benchmarks and frame the
construction of dynamic baselines as an optimization problem.

3.1 Ground Truth and Approximations
Formally, a ground truth CG is defined as follows:

Definition 3.1 (Ground-Truth CG). Let Traces(𝑝) be the set of all
execution traces of program 𝑝 starting at entry points from a set 𝐸.
The ground-truth CG contains all caller-callee edges in these traces:

GroundTruth(𝑝, 𝐸) =
{
caller → callee

���� Call(caller, callee) ∈ 𝑡,

𝑡 ∈ Traces(𝑝, 𝐸)

}
Computing a ground-truth CG is undecidable, as programs can

have infinitely many traces, of potentially infinite length. Thus, we
need to approximate it by some baseline constructed by collecting
calls from sampling dynamic program executions1:

Definition 3.2 (Dynamically-Sampled CG). Let Tr be a subset of
all execution traces Traces(𝑝) of program 𝑝 starting at entry points
from the set 𝐸. A dynamically-sampled CG of 𝑝 contains all caller-
callee edges in Tr:

Dynamic(𝑝, Tr, 𝐸) =
{
caller → callee

���� Call(caller, callee) ∈ 𝑡,

𝑡 ∈ Tr ⊆ Traces(𝑝, 𝐸)

}
To obtain reliable measures of precision and recall, we aim for

a dynamically-sampled CG that closely approximates the ground-
truth CG. Closeness depends on two decisions: (a) entry points 𝐸
used for the traces and (b) number of traces in Tr. In particular:
Observation 1: Dynamically-sampled CGs should have a high
coverage of the program parts reachable from the entry points.

In the ground truth, a method𝑚 is considered reachable from an
entry point 𝐸, if for any program execution starting at that entry
point, the method is invoked at least once, i.e., ∃𝑡 ∈ Traces(𝑝, 𝐸) s.t.
∃Call(_,𝑚) ∈ 𝑡 . In a (dynamic or static) CG computed for an entry
point 𝐸, a method𝑚 is considered reachable, if𝑚 is part of that CG.

3.2 Approximation from Fixed Entry Points
When first deciding on the entry point, it is important to keep in
mind that a good static CG is a good approximation of real program
behavior. Typically, a program will be executed from only few entry
points. These include main methods in applications [1], the public
API of a library [20], or just the subset of a library’s API actually
used in a particular application. As entry points are application-
specific, one should not choose them in arbitrary ways. This is
especially important for CG algorithms like RTA and CFA, which
compute object instantiations starting from the entry points. The
baseline against which to assess the quality of call graphs, should
thus comprise all possible program executions from these entry
points, but exclude program executions not realizable from them.
Static CG algorithms are often built on the assumption of a specific
entry point. Disregarding this has led to problems when comparing
static CGs to dynamic baselines [28].
Observation 2: Considering proper entry points is vital to model
real program behavior and assumptions of static CG analyses.

Below, we assume a single entry point (red arrow in Figure 1)
in line with static CG analyses that typically allow specifying one
entry point (e.g., [29]). Extension to multiple entry points is trivially
the union of execution traces starting at any of the entry points.
1It is infeasible to obtain this baseline by hand, because even trivial Java programs, e.g.,
a HelloWorld program, execute hundreds of methods [16] and more than 1000 calls.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth, Ben Hermann, and Mira Mezini

(a) Call Graph and Ground Truth (b) Methods Covered by Tests (c) Methods Covered by Corpus

Figure 1: Ground Truth and Coverage Achieved by Testing and Our Corpus-based Approach

3.3 Approximation by Tests or Benchmarks
To generate traces, some researchers rely on existing test suites [2,
28] or additional synthesized tests [27] to exercise the target pro-
grams. Benchmarks and unit tests, however, constitute entry points
that may not resemble typical use of a program. Notably, this is
true for synthesized tests that test all methods of a program.

A test-based dynamic baseline𝑇 = Dynamic(𝑝, Tr, 𝐸′) may have
no relation to the actual ground-truth CG 𝐺 from different entry
points 𝐸, as Figure 1b depicts (blue arrows). Adding more test cases
may not lead to more closely approximating 𝐺 ; on the contrary, it
may lead to more dynamic call edges that are not part of 𝐺 . Thus,
it is unclear how unit tests should be constructed and how many
should be used to get a 𝑇 that is a good approximation of 𝐺 .

Measuring 𝑆 against a 𝑇 sampled from unit tests could yield
arbitrarily wrong results. In the worst case, a𝑇 from tests with high
coverage metrics could cover many execution traces from unrelated
entry points, but (almost) none of𝐺 . Measuring a very imprecise 𝑆
against such 𝑇 would report high precision, possibly close to 100%,
if false-positive edges included in the static CG also appear in the
dynamic sample. Conversely, measuring a high-recall 𝑆 against a
test-based 𝑇 could result in a low recall measurement, possibly 0%:
a precise 𝑆 would not include edges outside𝐺 , so edges of𝑇 outside
𝐺 would wrongly be considered missing, i.e., false-negative. Not
much attention has been paid to this fact in previous work.
Observation 3: Test-based dynamic baselines can yield arbitrarily
wrong precision and recall measures.

Other researchers record a single execution of a benchmark
program [1, 7, 16]. A single trace, however, cannot be expected to
have a high coverage of the program, some code might even only
be executable on subsequent program executions [7] and missing
edges render the dynamic baseline unreliable [28].
Observation 4: A sufficiently high number of traces are needed to
cover most of the actual program behavior in a dynamic baseline.

3.4 Approximation by Input Corpus
We argue that dynamically-sampled CGs should be recorded by
executing programs repeatedly from the entry point of real program
executions and the same entry point as used for the static CGs.

A dynamically-sampled CG (𝐷) captured from the entry point
of the investigated static CG (𝑆) is a subset of the unattainable
ground-truth CG (𝐺), i.e., 𝐷 ⊆ 𝐺 , as depicted in Figure 1c. However,

Figure 2: Precision Measure in Relation to Corpus Size

a systematic improvement of 𝐷 is possible by expanding the corpus
of inputs passed to the entry point with new inputs that lead to
incorporating more of the previously uncovered segments of 𝐺
into 𝐷 (as shown in Figure 1c, where green areas transition to
orange). Consequently, accurately measuring precision and recall of
𝑆 becomes a matter of optimizing 𝐷 . Precision and recall metrics of
𝑆 measured based on 𝐷 establish bounds of 𝑆 ’s actual precision and
recall that would be measured based on 𝐺 . Optimizing 𝐷 tightens
these bounds. To the best of our knowledge, such bounds have not
been discussed in the literature before. Proofs for the theorems
listed below are given in the supplementary material.

First, the precision of 𝑆 measured against 𝐷 , Precision𝑆𝐷 , gives
a lower bound to the precision measured against 𝐺 , Precision𝑆𝐺 :2

Theorem 3.3 (Bound on Precision). 3

PrecisionSD =
|S ∩ D|
|S| ≤ |S ∩ G|

|S| = PrecisionSG □

This bound induces an optimization problem on 𝐷 , illustrated by
Figure 2: The measured Precision𝑆𝐷 provides a tightening bound to
the unattainable Precision𝑆𝐺 . With a small input corpus, only few
execution traces with few call edges are observed and many edges
in 𝑆 are classified as false-positives. As the input corpus grows,
more edges will be sampled, leading to a monotonic decrease in the
number of edges classified as false-positive and, thus, a monotonic
increase in the measured precision:

2Weuse PrecisionXY andRecallXY to denote the precision/recall of𝑋 measured against
𝑌 , withG,D, and S being abbreviations forGroundTruth (p,{𝑒 }),Dynamic (p,Tr,{𝑒 })
(with the same entry point 𝑒), and the static CG respectively.
3The proofs to all theorems can be found in the supplementary material accompanying
this paper

Total Recall? How Good Are Static Call Graphs Really? ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 3: Recall Measure in Relation to Corpus Size

Theorem 3.4 (Precision Bound Increases Monotonically).
For all dynamic call graphs D1 ⊆ D2,

PrecisionSD1 ≤ PrecisionSD2 □

Moving on, we observe that establishing a direct lower bound for
recall is not possible. RecallSD could exceed or fall short RecallSG.
These two measurements are ratios computed from different nomi-
nators and denominators, thus lacking an inherent relationship.

RecallSD =
|S ∩ D|
|D| ⋛

|S ∩ G|
|G| = RecallSG

However, we can establish bounds involving RecallDG, which
represents the recall or coverage achieved by 𝐷 relative to 𝐺 :

Theorem 3.5 (Bounds on Recall).

RecallSD ∗ RecallDG ≤ RecallSG ≤ 1 − (1 − RecallSD) ∗ RecallDG
□

The theorem establishes lower and upper bounds for RecallSG,
which cannot be directly measured, because RecallDG cannot be
directly measured. But RecallDG is the focus in the optimization
process of expanding the input corpus, i.e., it can be systematically
approached. The bounds on recall established above get gradually
tightened asRecallDG expands due to the growth of the input corpus
as depicted in Figure 3:

Theorem 3.6 (Recall Bounds Tighten Monotonically). For
all dynamic call graphs D1 ⊆ D2,

RecallSD1 ∗ RecallD1G ≤ RecallSD2 ∗ RecallD2G

1 − (1 − RecallSD2) ∗ RecallD2G ≤ 1 − (1 − RecallSD1) ∗ RecallD1G

□

The distance separating the bounds is 1 − RecallDG, tighten-
ing as RecallDG is optimized. Thus, Theorem 3.5 also induces an
optimization problem.

To recap, we advocate for the utilization of dynamically-sampled
CGs, which get systematically refined to more accurately represent
the unattainable ground-truth CG by leveraging input corpora.
Observation 5: Input corpora for dynamic CGs can (and should!)
be optimized to yield tight bounds on precision and recall measures.

At this point, the question remains open, as to how to supply ap-
propriate arguments to entry points to obtain meaningful program
runs with comprehensive coverage, which has been identified to
be challenging in previous work [27]. In the forthcoming section,

we present a method to address this open question, along with the
overall method to measure precision and recall by utilizing our new
method for constructing dynamic call graphs.

4 OUR METHOD FOR ASSESSING STATIC CGS
Here, we present our architecture for using dynamically-sampled
CGs introduced in 3 to assess the precision and recall of static CGs.

High-level Overview. Figure 4 gives an overview of our architec-
ture and its components. A Java program to be analyzed is passed
to a static analysis, which computes a static CG 𝑆 , and to a dynamic
analysis, which records the dynamically-sampled CG 𝐷 . The result-
ing static and dynamic CGs are compared to compute precision and
recall. This general approach is in line with previous research on
dynamic baselines [2, 16, 27, 28]. A key methodological contribu-
tion is the addition of a corpus generation process, which produces
a set of inputs for the selected entry point. This set of inputs is used
for running the analyzed program to record 𝐷 . In the following, we
introduce our experimental infrastructure. Subsequently, we elabo-
rate on individual components and discuss how we implemented
them for enabling our study of static CGs for Java applications.

Experimental Infrastructure. We build our experimental infras-
tructure on top of Reif et al.’s [20, 21] JCG toolchain for Java CGs.
It provides support for generating static CGs using different algo-
rithms from OPAL 5.0.1 [10, 14], Soot 4.4.1 [30], WALA 1.5.7 [15],
and Doop 4.20.14 [5] based on a program-specific configuration. It
serializes the CGs to a JSON-based file format and supports some
rudimentary comparison of CGs. We extend this toolchain, while
reusing its file formats and its support for the program configura-
tion and CG serialization.

4.1 Corpus Generation
The corpus generation process is responsible for generating inputs
for running the target program to record 𝐷 . With these inputs,
starting from the selected entry point, the target program should
reach as much dynamic program behavior as possible. We combine
the following corpus generation techniques.

Existing Corpora We use existing publicly available corpora as a
seed corpus of valid and invalid input samples.

Manual Extension We inspect the coverage resulting from the
use of existing corpora, and manually create additional inputs
that exercise new code paths.

Fuzzing We employ a fuzzer with the initial corpora to generate in-
put covering more dynamic behavior, e.g., edge- and failure cases.
Coverage-guided fuzzing increases RecallDG, our dynamically-
sampled CG 𝐷’s coverage of the ground truth, while minimizing
human effort to creating the corpora. It does so by instrumenting
the target program to measure coverage of the execution, while
randomly mutating the given corpus to discover new execution
paths. Input data that leads to more coverage is added to the cor-
pus and mutated further. Fuzzing improves 𝐷’s approximation
to𝐺 without over-approximation, as defined in Section 3.4, as
the program is still executed from the specified entry point.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth, Ben Hermann, and Mira Mezini

Results
Precision = 13%
Recall = 91%
F1-Score = 23%Static CG

Static Analysis

Analyzed
Program

Dynamic Analysis

Static Analysis #1

Dynamic CG

Static CG #1

Assessment
Results CG #1
Precision = 13%
Recall = 91%
F1-Score = 23%

Corpus Generation

Input Corpus

Entrypoint

Figure 4: Architecture for Measuring Precision and Recall of Multiple Static Call-Graph Analyses.

In our empirical studies (Section 5), we employ Jazzer, a greybox
fuzzer for Java programs using the widely-used LibFuzzer4. Grey-
box fuzzing, the forefront of fuzzing techniques [6, 31], mutates
seed inputs to generate new ones. It prioritizes inputs that unveil
yet undiscovered execution paths. While fuzzers are often used for
vulnerability detection, we use Jazzer to achieve reasonable cover-
age of dynamic program execution. Thus, we do not require any
input prioritization to discover specific execution paths first [31].
Note that our approach is not limited to greybox fuzzing and can
be used with other fuzzing or non-fuzzing techniques. Combining
all techniques works well by covering both valid (mainly from the
initial corpora) and invalid (mainly from fuzzing) inputs.

As discussed in Section 3.4, generating an appropriate input
corpus is an optimization problem: finding and adding inputs that
exercise new code paths—be it automatically (e.g., by fuzzing for a
longer period of time) ormanually—will improve𝐷’s approximation
of 𝐺 , which, in turn, tightens the bounds on precision and recall.

Some programs are less amenable to this strategy of file-based
input corpora combined with fuzzing, e.g., those with graphical
user interfaces (GUIs). Still, our approach can be adapted to such
programs by employing diverse corpus generation techniques, e.g.,
incorporating strategies like monkey testing [32] for GUIs.

4.2 Measuring Recall and Precision
Dynamic Analysis. The dynamic analysis records and serializes

𝐷 , the dynamically-sampled CG. It executes the analyzed program
on the input corpus, starting from configured entry points. The
dynamic analysis intercepts every method invocation (i.e., every
time execution of a method starts) and records the call’s caller
method, call site (program counter and, if available, line number),
and callee method.

The recorded 𝐷 is context-insensitive as are the static CGs that
we assess. Still, 𝐷 can be used to assess context-sensitive CGs di-
rectly or the analysis could be extended to record call strings.

We implemented the dynamic analysis as a Java Virtual Machine
Tool Interface [18] agent, which enables automatic interception of
runtime events. The agent is attached to the runtime process of
the analyzed program, intercepts the JVMTI_EVENT_METHOD_ENTRY
event, and transmits call edges via a TCP socket to JCG, where they
are aggregated and serialized for assessment.

4Accessible at https://github.com/CodeIntelligenceTesting/jazzer and https://llvm.org/
docs/LibFuzzer.html, respectively

Static Analysis. We want to assess precision and recall of differ-
ent static CG analyses from different static analysis frameworks.
These analyses are run on the target program with the same entry
points configured. Using JCG toolchain, we support the OPAL, Soot,
WALA, and Doop frameworks and serialize the CGs into JCG’s file
format for assessment. We compute static CGs for the following
widely-used algorithms: Class-hierarchy analysis [29] (OPAL, Soot,
WALA), rapid type analysis [3] (OPAL and WALA; Soot’s RTA fails
to analyze the full JDK 8 because of MethodHandle constants that
it cannot interpret), and 0-CFA [24] (OPAL, WALA, Doop).

Assessment. Finally, 𝐷 is used to assess the quality of static CGs
𝑆 . This involves matching methods in both CGs based on their
names and signatures. Call edges are matched using caller and
callee methods and the program counter or line number of the
call (not all frameworks capture both pieces of information). To
facilitate this assessment, we extended JCG. The extension enables
matching calls of 𝑆 against 𝐷 and subsequently computes precision,
recall, and F1-measure, as detailed in Section 3.

5 EMPIRICAL STUDIES
In this section, we assess our approach and employ it to study CGs
from different static analysis frameworks. Specifically, we aim to
answer the following research questions:

RQ1 Can our approach create high-quality dynamically CGs?
RQ2 How do different corpus generation techniques influence

the quality of the dynamically-sampled CGs?
RQ3 How can the quality of static CGs be assessed?

With each RQ, we also provide takeaways for both developers and
users of static CG analyses to better assess CG quality.

5.1 Study Setup
Choice of Programs to Analyze and Corresponding Entry Points.

The subject of our study are programs from the XCorpus [9], a
curated corpus of 76 Java programs, that fulfill the following criteria:

• Can be executed on a single machine without any third party
components running. This rules out programs like Colt, which
requires a compute cluster.

• Do not rely on a GUI, network traffic, or interactive user input for
core functionalities, ruling out applications like Apache Tomcat.

• Provide a choice of entry point that can cover a substantial part
of the program. This rules out libraries like Apache Commons.

https://github.com/CodeIntelligenceTesting/jazzer
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

Total Recall? How Good Are Static Call Graphs Really? ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Selected Benchmark Programs

Program Description Lines of Code Entry Point

Axion SQL database 24 113 org.axiondb.tools.Console.execute
Batik SVG toolkit 179 129 org.apache.batik.apps.rasterizer.SVGConverter.execute
Jasml Java Compiler 5 595 com.jasml.decompiler.JavaClassParser.parse
Xerces XML library 192 110 org.apache.xerces.jaxp.DocumentBuilderFactoryImpl.parse

• Consume a structured input format (i.e., grammar-based, not,
e.g., raw image data) that has existing corpora and is suitable
for mutation-based fuzzing; this excludes e.g., the 3D rendering
library Sunflower.

• Are from different application domains and use different input
formats, e.g., from XML processors Apache Xalan and Apache
Xerces we only picked one, Apache Xerces.
The criteria are designed to guarantee that an automated process,

utilizing a predetermined input corpus and automated fuzzing,
effectively exercises substantial parts of the program. Moreover,
they aim to ensure that analyzed programs present a wide range of
challenges for static CGs.

The four programs that do fullfil the criteria are shown in Ta-
ble 1.5 For these programs, we define entry points around main
methods. The latter are the intended entry points into the respec-
tive applications and also starting points for static CG analyses.
If there is a single main method, we constructed an entry-point
method similar to this main method. The constructed entry point
properly sets up and clears resources (e.g., temporary files) and
avoids code that requires user interaction. For example, the main
method of the SQL database Axion provides an interactive com-
mand line to execute SQL commands. We chose an entry point close
to that main method which parses SQL commands from a file and
executes them. This exercises the core functionality of Axion while
at the same time avoiding unrelated user interaction (i.e., reading
SQL queries from the command line). If an application has multiple
main methods, we tested each to find one whose execution covers
significant parts of the code base. In cases where no main methods
were available, we delved into the documentation to identify core
use cases. Subsequently, we constructed an entry point for the use
case that exercises more portions of the code base.

Execution Harness. For each of the selected programs, we devel-
oped a concise execution harness with less than 100 lines of code.
These harnesses retrieve inputs from the input corpus, initialize es-
sential classes needed to execute the entry point, and subsequently
invoke the entry point for each input. Their small size ensures
that these harnesses exert minimal influence on the resulting CGs.
Moreover, they are integrated into both dynamic and static analyses
to maintain consistency for comparisons.

Corpus Generation. For each of the input data formats, we col-
lected publicly available corpora of valid and invalid data. For the
SQL database Axion, we extracted SQL commands from the test
suites of SQLite, Postgres, and Clickhouse. For the SVG library
Batik, we took SVGs from Mozilla’s SVG test suite, icons from

5The lines of code were measured with Tokei (https://github.com/XAMPPRocky/tokei).

fonts.google.com, icon set Linea from icons8.com, responsive de-
sign vector icons from pixelbuddha.net, and icon set icon-works
from fontsquirrel.com. For the Java compiler Jasml, we obtained
Java 1.4 class files from four projects in the XCorpus. For the XML
library Xerces, we used XML files from the libxml2 and Mozilla test
suites and the SVG files for Batik. We obtained some of these inputs
from fuzzing corpora publicly available on Github.6

Next, we employed standard coverage metrics to evaluate the
extent to which our corpus exercises a substantial portion of the
code base accessible from the entry point. This involved identifying
packages, classes, and methods reachable from the entry point but
not exercised by the current input corpus. For instance, Axion’s
utilization of the non-standard command LIST SYSTEM TABLES
to generate a summary of internal tables remained unexplored
within our initial corpus, which focused solely on standard SQL
commands. For each missing class or method, we looked at their
names and, if necessary, source code to identify inputs that would
exercise the class or method and added these inputs to the corpus.
Subsequently, we checked whether the missing class or method
was now covered. We worked on this step until no more clear
opportunities for extending the input corpus were found.

After crafting input corpora, we executed the fuzzer Jazzer to
generate additional inputs, often edge and failure cases. We exe-
cuted the fuzzer repeatedly in one hour intervals, until coverage
approached a plateau and no longer increased significantly.

Choice of Static Call-Graph Algorithms. For the study, we selected
four algorithms, where each one is available inmultiple frameworks:
Class-Hierarchy Analysis (CHA) [8] considering only the class hi-
erarchy, Rapid-Type Analysis (RTA) [3] algorithm refining CHA
by considering possible instantiations of types, and Control-Flow
Analysis (CFA) [24], which incorporates pointer information. We
opted for the context-insensitive variant of CFA (0-CFA), which
joins results of all call sites of the same method. We studied these
algorithms in four state-of-the-art analysis frameworks for Java:
OPAL 5.0.1, Soot 4.4.1, WALA 1.5.7, and Doop 4.20.14. Among those,
Doop only supports pointer-based CG algorithms, i.e., CFA.

Call-Graph Construction. We constructed both static and dy-
namic CGs as depicted in Figure 4. We used Adoptium OpenJDK
1.8.0_342-b07 that worked with all static analysis frameworks. We
provided 400GB of heap space and set a timeout of 3 hours. We
configured all frameworks to analyze the full JDK for comparability.
For Soot, we were unable to generate RTA and 0-CFA CGs: these
analyses crashed while analyzing the JDK due to MethodHandle
constants Soot cannot interpret. This leaves us with a total of eight
algorithm implementations for static CGs: three versions of CHA
6https://github.com/strongcourage/fuzzing-corpus/

https://github.com/XAMPPRocky/tokei
https://fonts.google.com
https://icons8.com
https://pixelbuddha.net
https://fontsquirrel.com
https://github.com/strongcourage/fuzzing-corpus/

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth, Ben Hermann, and Mira Mezini

Table 2: Dynamic Call-Graph Coverage

Coverage

Program Instruction Branch Method Class

Axion 56% 58% 53% 86%
Batik 38% 27% 31% 53%
Jasml 80% 65% 81% 98%
Xerces 15% 12% 12% 17%

Table 3: Metrics for Reachable Methods in com.jasml

OPAL WALA Soot Doop

Metric CHA RTA 0-CFA CHA RTA 0-CFA CHA 0-CFA

Precision 95.1% 96.0% 96.4% 95.9% 95.5% 96.4% 96.0% 96.4%
Recall 100% 100% 100% 99.5% 100% 100% 100% 100%
CG Size 225 223 222 222 224 222 223 222

(OPAL, WALA, Soot), two of RTA (OPAL, WALA) and three of 0-
CFA (OPAL, WALA, Doop). Moreover, WALA produced no 0-CFA
CG for Batik within the given timeout.

5.2 Quality of Dynamic Call Graphs
As discussed in Section 3.4, comparing static CGs 𝑆 against a CG
𝐷 that is dynamically sampled from a single entry point provides
a lower bound on precision and tightening bounds on recall as 𝐷
covers more of the ground truth 𝐺 . Coverage is thus an important
indicator of the quality of 𝐷 . In this section, we assess the cover-
age of our 𝐷 (RQ1). We measured coverage with JaCoCo7 0.8.10,
running the execution harness described in Section 5.1 on the final
input corpus after fuzzing. Table 2 shows the instruction-, branch-,
method-, and class coverage for each analyzed program.

According to our definition of the coverage of 𝐷 (cf. Section 3.1),
we are only interested in covering program parts that are reach-
able from the given entry points. This explains why coverage for
some programs can seem low. These programs may contain many
packages that are not coverable from the selected entry points.
For example, Batik contains a large package org.apache.batik.
apps.svgbrowserwith 217 classes and 966 methods, which cannot
possibly be covered from our entrypoint that rasters SVGs to PNGs.
Xerces provides the package org.apache.html.domwith 61 classes
and 710 methods, concerned with HTML-specific functionality,
which is not reachable from our entrypoint that parses XML files.
Furthermore, Xerces provides a number of classes and methods for
traversing and iterating XML documents, which are never invoked
while parsing. In contrast, other key packages have high cover-
age. For example, Batik’s package org.apache.batik.dom.svg,
the core package for the internal model of the SVG format, consists
of 163 classes and has 91.4% class coverage, org.apache.xerces.
impl containing the core Scanner implementations achieves 85%.

We find that our approach achieves high coverage of the pro-
gram parts reachable from the selected entry points, while avoiding

7https://www.eclemma.org/jacoco/

spurious coverage as, e.g., synthesized tests might have. This de-
liberate avoidance helps us identify imprecise static CGs, which
might encompass program parts not within the entry point’s reach.

This is also supported by the calculated precision, recall, and size
of different CG algorithms using our𝐷 . Consider for illustration the
metrics for reachable methods in Jasml (Table 3). Every algorithm
exceptWALACHA found all methods in𝐷 (100% recall); also almost
all methods found by the algorithms are part of 𝐷 (96% precision).
Since static CGs represent a (supposed) over-approximation of𝐺 ,
while𝐷 under-approximates𝐺 , a near perfect agreement of all eight
𝑆 and 𝐷 suggests that 𝐷 should be very close to the unattainable
𝐺 . Hence, in Table 3 we show by example that the dynamic CG 𝐷

is similar, indeed almost equal, to the static CG 𝑆 to illustrate that
the dynamic CG 𝐷 can be a valuable approximation, regardless of
the kind of CG algorithm, although Jasml may not have too many
sophisticated programming constructs.

We conclude that it is feasible to create input corpora achieving
high coverage of the analyzed program bymanually extending exist-
ing corpora and employing a fuzzer to further improve upon them.
For programs where these techniques can not easily be applied, e.g.,
programs with graphical user interfaces, other techniques might
be applicable to generate high-quality 𝐷s, such as monkey testing.
Overall, to assess the quality of CGs, one should use as reference a
𝐷 that is recorded on an input corpus optimized for high coverage.
Takeaway 1: Dynamically-sampled CGs based on generated input
corpora can serve as a basis for assessing static CG quality.

5.3 Effect of Input Generation Techniques
In Section 4.1, we explained how we used various methods to get
the coverage values mentioned in Section 5.2. Now, we look into
how well these methods work when used alone or together (RQ2).
This exploration helps us to recognize which methods are more
effective overall and whether we really need all of them. It also
gives us ideas for future studies on dynamic baselines. This way, we
and other researchers can figure out where to focus efforts among
these different methods.

To this end, we calculate the coverages of 𝐷 for each generation
technique. The setup is analogous to Section 5.2, with the only
distinguishing factor being the actual set of inputs used. We report
the resulting coverages for each project in four configurations:

Corpus We only use a publicly available seed corpus as input.
Extension We use the seed corpus as before, but with additional in-

puts that have been selected manually from other public sources,
or hand-crafted after inspecting the program.

Fuzzing We only use fuzzing for generating inputs, without any
seed corpus to start with.

Combined We combine all techniques as reported in Section 5.2.

In Table 4, we present the branch coverages obtained from vari-
ous techniques across all programs. Using only a public seed corpus
results in coverages ranging from 20% to 58% out of combined cov-
erages of 27% to 65%. Expanding this corpus manually improves
coverage for all programs except Xerces, adding up to 6 percentage
points. Fuzzing, when used alone, does not generate good quality
𝐷s, achieving coverages between 1% and 7% out of 27% to 12%.
Yet, it plays a crucial role in enhancing the overall coverage when

https://www.eclemma.org/jacoco/

Total Recall? How Good Are Static Call Graphs Really? ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 4: Branch-Coverage for Generation Techniques

Technique

Program Corpus Extension Fuzzing Combined

Axion 45% 51% 26% 58%
Batik 20% 25% 1% 27%
Jasml 58% 60% 27% 65%
Xerces 10% 10% 7% 12%

combined with other techniques, as it increases the coverage of the
extended seed corpus by up to 7 percentage points (Axion).

We see that each step significantly increases the coverage and
thus the quality of 𝐷 .
Takeaway 2: Public corpora, manual extension, and fuzzing are
each necessary for crafting a high-coverage input corpus.

5.4 Comparing Static Call Graphs
It is common to compare the precision and recall of static CGs 𝑆
by measuring their size, the number of reachable methods or call
edges (cf. Section 2). The common assumption is that smaller CGs
imply higher precision [29]. In this section, we evaluate whether
this is a sensible shortcut to using a dynamic baseline (RQ3). We
also reflect upon some other aspects that need to be taken into
account in order to meaningfully compare static CGs to each other.

We measure precision and recall of the eight CG algorithm
implementations in the four considered frameworks using our
dynamically-sampled 𝐷s as baselines. We compute precision and
recall for both reachable methods and edges. Furthermore, we sep-
arately compute values for the whole CG, including dependencies
and the JDK, and for a filtered version that only contains method-
s/edges inside each program’s core application package. This allows
a comparison of CG algorithms both on the large and difficult to
analyze code base of the JDK, and on the actual application. For
every algorithm implementation and target program, we obtain a
total of four measures (methods/edges and core package/whole CG
each) for precision and recall. Each time, we also compute the size
of 𝑆 , i.e., its number of methods or edges, respectively.

5.4.1 Implications of Call-Graph Size. If static CG size was a pre-
dictor for precision, we would expect that a smaller CG indicates
higher precision. Our data shows that this is not always the case; a
smaller static CG can also be the result of lower recall. Consider
Figure 5, which shows precision and recall on all edges, i.e., edges
of the whole CG, for implementations of 0-CFA: OPAL’s CG for
Xerces contains over 5000 fewer edges than Doop’s, however its
precision is lower by 0.5%, with the missing edges lowering recall.
Similar observations can be made for Doop vs. WALA on Jasml, for
OPAL vs. Doop on Batik, and for OPAL vs. Doop on Axion—each
time the smaller CG exhibits lower (or equal) precision compared
to the larger one. Finally, the data presented in Table 3 also shows
a smaller CG (WALA CHA) that has lower precision compared to
larger ones (e.g., Soot CHA), albeit on a very small scale.

If the static CG size was a predictor for recall, we would expect
that a larger CG indicates higher recall. This is often the case, as
evidenced by Figure 5; but again not always. For example, Doop’s

19.4
2.8

15.3

Precision
60.7

91.0
44.1

Recall
57.3K

605.3K
52.9K

axion

Static CG Size

21.6

21.6

58.2

30.0

128.8K

66.5K

batik

11.6
6.9
6.3

64.4
68.4

36.9

49.7K
89.2K

52.2K

jasm
l

0% 10% 20%

21.0
18.7

21.5

0% 50%

33.8
55.7

38.4

0 250K 500K

46.6K
86.2K

51.8K

xerces

OPAL
WALA
Doop

Figure 5: Smaller Graphswith Lower Precision, Higher Recall
(0-CFA, Edges incl. JDK)

0.4
0.3

Precision
92.2
89.7

Recall
4.6M
5.0M

axion

Static CG Size

0.9
0.8

93.1
85.5

5.0M
5.4M

batik

0.2
0.2

95.1
87.1

3.4M
3.6M

jasm
l

0% 0.5%

0.7
0.6

0% 50%

93.5
83.3

0 2M 4M

3.7M
3.9M

xerces

OPAL
WALA

Figure 6: Larger Graphs with Lower Recall (CHA, Edges incl.
JDK)

0-CFA for Jasml in Figure 5 has 2.5K edges more than the OPAL’s 0-
CFA, yet, recall is lower by almost 30 percentage points. In Figure 6,
we observe similar results when comparing the values for size and
recall of OPAL’s and WALA’s CHA on edges of the whole CG.

To sum up, our study indicates that merely comparing the sizes
of CGs is not enough to assess their relative precision or recall
accurately. Neither are smaller CGs necessarily more precise, nor
do larger CGs always exhibit higher recall. This is especially true
when the CGs are derived from different static analysis frameworks
(cf. Figure 6). It is thus essential to explicitly measure precision
and recall using high-quality dynamic baselines—ones optimized
to closely align with the ground truth.
Takeaway 3: CG size is not a reliable predictor of CG precision
nor recall.

5.4.2 Effects of Mode of Measurement. Existing works often rely
on comparing either reachable methods or call edges to calculate

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth, Ben Hermann, and Mira Mezini

Table 5: Batik Metrics for All Edges versus All Methods

Precision Recall Size

Algorithm Methods Edges Methods Edges Methods Edges

CHA
OPAL 7.3% 0.9% 97.6% 93.1% 194.1K 5.0M
WALA 9.0% 0.8% 91.6% 85.5% 147.1K 5.4M
Soot 8.7% 0.7% 96.5% 81.1% 160.8K 5.2M

RTA OPAL 40.1% 9.1% 63.4% 59.5% 22.8K 313.8K
WALA 10.5% 1.1% 92.8% 87.5% 127.3K 3.9M

0-CFA OPAL 44.6% 21.6% 62.3% 58.2% 20.2K 128.8K
Doop 48.8% 21.6% 65.4% 30.0% 19.3K 66.5K

precision and recall (cf. Section 2) without discussing the effects of
these respective choices. From this lack of discussion, we derive
that researchers assume that there are no relevant differences when
measuring on methods as opposed to edges. Because a method is
deemed reachable regardless of the number of incoming call edges,
this assumption is questionable. Our results underline this.

Consider for illustration the results for Batik calculated on reach-
able methods, respectively edges in Table 5 (similar trends were
seen across all projects in our benchmark). For CHA,WALA demon-
strates the highest precision in terms of methods (9.0%), while OPAL
excels in edge precision (0.9%). Interestingly, OPAL generates the
largest CHA CG in terms of methods but the smallest in terms of
edges. For 0-CFA, Doop surpasses OPAL by four percentage points
in method precision, yet their edge precision remains comparable.
Although Doop exhibits slightly higher method recall than OPAL,
this reverses when considering edges—where OPAL nearly doubles
Doop’s edge recall. This suggests that Doop misses many call edges,
which is hidden in the measure for methods as the methods are still
found to be reachable by at least one other edge.

This suggests that looking only at reachable methods (or only
edges) is not sufficient to assess CG quality. In particular, both pre-
cision and recall on edges are often significantly lower than on
methods. CG algorithms showing promising quality on methods
may thus be significantly worse regarding edges. Results for both
need to be provided when evaluating CG algorithms; for some appli-
cations reachable methods may be more important than edges (e.g.,
vulnerable method detection), and vice versa (e.g., taint analysis).
Takeaway 4: Looking only at a single mode of measurement misses
important insights.

Takeaway 5: Precision and recall in terms of call edges are often
significantly lower than in terms of reachable methods.

5.4.3 Effects of Concrete Implementations. Users of CGs might
decide for a CG analysis by selecting an algorithm from the imple-
mentations in their preferred framework based on its theoretical
or perceived characteristics, e.g., RTA as a more precise algorithm
than CHA. Our study reveals that concrete implementations of CG
algorithms may have surprising effects on the actual precision and
recall.

Take the example of WALA in Table 3: RTA and 0-CFA show
perfect recall (100%), but CHA falls a bit short with 99.5% recall.
This is unexpected because CHA, while being the least precise, is
assumed to be the algorithmwith the highest recall among the three
kinds of algorithms. Also, according to the definitions of RTA and

0% 50%

 CHA
 RTA

0-CFA

73.8
73.7

63.0

Precision

0% 100%

99.7
100.0
100.0

Recall

0 2K

1.9K
1.9K

2.2K

Static CG Size

Figure 7: More Complex Algorithms with Lower Precision
(Axion Core Package Methods, WALA)

CHA algorithms, RTA CGs should be a subset of CHA CGs, which
means RTA’s recall should not be higher than CHA’s. Note that
Table 3 is not suitable for drawing conclusions about differences in
CG algorithms. Another surprising observation is that allocating
additional time and resources to compute a seemingly more accu-
rate CG can sometimes lead to the opposite outcome. For instance,
when examining WALA’s performance on Axion (Figure 7), we
observe that the more sophisticated the algorithm, the less precise
the results become. Specifically, CHA attains 73.8% precision while
0-CFA achieves only 63.0% precision.

The results for Xerces’ core package shown in Figure 8 reveal
another insight on specific implementations. Xerces is used via JDK
methods using reflection to instantiate Xerces classes given in a sys-
tem property (Listing 1). None of the 0-CFA implementations can
resolve this reflection, resulting in empty CGs (an extreme corner
case). Additionally OPAL’s on-the-fly RTA considers classes instan-
tiated only when an instantiation is found in a method already
considered reachable. This misses the reflective instantiation of
org.apache.xerces.jaxp.DocumentBuilderFactoryImplwhen
newDocumentBuilder(), again resulting in an empty CG. WALA’s
RTA, using a different design, considers the class instantiated and
achieves 100% recall. This highlights how decisions on the imple-
mentation of an established algorithm can lead to large differences
in resulting CGs, even for the same conceptual algorithm. As a side
note, this shows that developers of Java analysis frameworks should
strive to support reflection as best as they can, if high recall is de-
sired. In this corner case, a single reflective invocation (combined
with system properties) lead to completely invalid results.

System.setProperty(

"javax.xml.parsers.DocumentBuilderFactory",

"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

javax.xml.parsers.DocumentBuilder parser =

DocumentBuilderFactory.newInstance().newDocumentBuilder();

parser.parse(new ByteArrayInputStream(input));

Listing 1: Entrypoint for Xerces

As theoretical characteristics of CG algorithms can be misleading
and, for the same conceptual algorithm, the framework of choice
may have a significant impact, one should compare the results of
different CG implementations, if possible frommultiple frameworks,
instead of relying on perceived theoretical properties.
Takeaway 6: Concrete implementations of static CG algorithms
may have unexpected effects on precision and recall.

Total Recall? How Good Are Static Call Graphs Really? ISSTA ’24, September 16–20, 2024, Vienna, Austria

0% 50% 100%

 C
HA

 R
TA

0-
CF

A

99.4

0.0

0.0

99.1

100.0

0.0

99.4

0.0

Recall

0 2K 4K 6K

6.1K

0.0

0.0

6.0K

5.5K

0.0

6.0K

0.0

Static CG Size

OPAL
WALA
Soot
Doop

Figure 8: Empty Graphs due to Reflection (Xerces Core Pack-
age Methods)

The example of Xerces also shows how static CG quality assessed
on one program may not generalize to other programs. When ex-
amining CGs, researchers select a specific set of programs to study,
often chosen from a curated corpus. Findings may be confined to
the chosen set. One should thus evaluate on diverse programs to
reason about CG quality. For users, when choosing a CG algorithm
and analysis framework for a specific use case, it is crucial to verify
validity and usefulness of existing claims about their quality.
Takeaway 7: Observations about the quality of static CGs on some
programs may not generalize to other programs.

5.5 Threats to Validity
5.5.1 Internal Validity. We measure recall and precision of static
CGs using a dynamic CG 𝐷 as the reference baseline, an under-
approximation of the unattainable ground-truth CG 𝐺 . If the 𝐷 is
not a good approximation of𝐺 , then precision and recall measured
using 𝐷 will deviate from the actual precision and recall that would
be measured by using 𝐺 . However, as explained in Section 3.4, this
is a problem of optimizing 𝐷’s coverage of 𝐺 , Recall𝐷𝐺 , to ensure
tighten the bounds between the measured and true values. We per-
form this optimization by extending corpora both manually and
using state-of-the-art fuzzing to ensure a good coverage of 𝐺 .

Our results might also be affected the setup of the static analysis
frameworks. To ensure fair comparison, we made all frameworks
analyze the entire JDK, even though their default configurations
exclude different JDK packages, and enforced a timeout of 3 hours.
As a result, we could not generate CGs for all algorithms for all
programs. However, both measures are necessary to ensure fair
comparison between different implementations of a each algorithm.

5.5.2 External Validity. For our four benchmark programs, we se-
lected one entry point each. While we ensured these entry points
cover the programs’ core use cases, findings might not general-
ize other entry points. Instead of analyzing multiple entry points
for one program, we considered assessing a more diverse set of
programs more valuable to gain broader insights.

To obtain𝐷 , we use fuzzing, non-deterministic process, so results
may vary slightly depending on the resources spent. We applied
fuzzing until no new paths were found to minimize this risk.

6 CONCLUSION
Call-graph quality is crucial for many static analyses. Prior work
often relied on the number of reachable methods to measure pre-
cision, or micro-benchmarks to assess recall. Where a dynamic
baseline was used, it was derived from test cases and may thus not
be representative of actual program execution.

We showed that construction of a good dynamic baseline is an
optimization problem when entry points are considered. This yields
bounds on precision and recall that approach the unattainable real
values as the baseline is improved. We proposed a methodology to
compute such baselines, employing public corpora, manual exten-
sion, and fuzzing for optimization. Using this, we recorded dynamic
CGs for four Java programs and used them to assess statically gen-
erated CGs from four popular static analysis frameworks.

Our studies showed that CG size is not a reliable predictor for
precision or recall. We also found that considering just reachable
methods misses important insights revealed by also looking at call
edges. Finally, we observed that the quality of CGs from a single
framework or algorithm can varywidely. To be certain of the quality
of a concrete static CG for a given use case, one cannot rely on any
proxy measure, but instead has to evaluate against a good dynamic
baseline, yielding guaranteed bounds on precision and recall.

7 DATA AVAILABILITY
Proofs, scripts, and evaluation data are included in supplementary
material. An artifact8 provides them together with the full input
corpora.

ACKNOWLEDGMENTS
This work was supported by the DFG as part of CRC 1119 CROSS-
ING, by the German Federal Ministry of Education and Research
(BMBF) as well as by the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) within their joint support of
the National Research Center for Applied Cybersecurity ATHENE.

REFERENCES
[1] Karim Ali and Ondrej Lhoták. 2012. Application-Only Call Graph Construction.

In ECOOP 2012 - Object-Oriented Programming (Beijing, China) (ECOOP’12).
Springer, 688–712. https://doi.org/10.1007/978-3-642-31057-7_30

[2] Gábor Antal, Péter Hegedűs, Zoltán Herczeg, Gábor Lóki, and Rudolf Ferenc.
2023. Is JavaScript Call Graph Extraction Solved Yet? A Comparative Study of
Static and Dynamic Tools. IEEE Access 11 (2023), 25266–25284. https://doi.org/
10.1109/ACCESS.2023.3255984

[3] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual
Function Calls. In Proceedings of the 11th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (San Jose, CA, USA)
(OOPSLA’96). ACM, 324–341. https://doi.org/10.1145/236337.236371

[4] Eric Bodden. 2018. The Secret Sauce in Efficient and Precise Static Analysis:
The Beauty of Distributive, Summary-Based Static Analyses (and How to Master
Them). In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amster-
dam, The Netherlands) (SOAP’18). ACM, 85–93. https://doi.org/10.1145/3236454.
3236500

[5] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications

8https://doi.org/10.5281/zenodo.10888532

https://doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1109/ACCESS.2023.3255984
https://doi.org/10.1109/ACCESS.2023.3255984
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.5281/zenodo.10888532

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Sven Keidel, Anemone Kampkötter, Johannes Düsing, Tobias Roth, Ben Hermann, and Mira Mezini

(Orlando, FL, USA) (OOPSLA’09). ACM, 243–262. https://doi.org/10.1145/1640089.
1640108

[6] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, TX USA) (CCS’17).
ACM, 2329–2344. https://doi.org/10.1145/3133956.3134020

[7] Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Has-
sanshahi. 2022. Automatic Root Cause Quantification for Missing Edges in
JavaScript Call Graphs. In 36th European Conference on Object-Oriented Program-
ming (Berlin, Germany) (ECOOP’22). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 3:1–3:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.3

[8] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In European Conference
on Object-Oriented Programming (Åarhus, Denmark) (ECOOP’95). Springer, 77–
101. https://doi.org/10.1007/3-540-49538-X_5

[9] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus–An
executable Corpus of Java Programs. Journal of Object Technology 16, 4 (2017),
1:1–1:24. https://doi.org/10.5381/jot.2017.16.4.a1

[10] Michael Eichberg and Ben Hermann. 2014. A software product line for static
analyses: the OPAL framework. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on the State of the Art in Java Program Analysis (Edinburgh,
United Kingdom) (SOAP’14). ACM, 1–6. https://doi.org/10.1145/2614628.2614630

[11] David Grove and Craig Chambers. 2001. A Framework for Call Graph Construc-
tion Algorithms. ACM Transactions on Programming Languages and Systems 23,
6 (2001), 685–746. https://doi.org/10.1145/506315.506316

[12] Tobias Gutzmann, Antonina Khairova, Jonas Lundberg, and Welf Löwe. 2009.
Towards Comparing and Combining Points-to Analyses. In 2009 Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation
(Edmonton, Canada) (SCAM’09). IEEE, 45–54. https://doi.org/10.1109/SCAM.
2009.14

[13] Dongjie He, Jingbo Lu, and Jingling Xue. 2022. Qilin: A New Framework For
Supporting Fine-Grained Context-Sensitivity in Java Pointer Analysis. In 36th Eu-
ropean Conference on Object-Oriented Programming (ECOOP’22, Vol. 222). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 30:1–30:29. https://doi.org/10.4230/
LIPIcs.ECOOP.2022.30

[14] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini.
2020. Modular Collaborative ProgramAnalysis in OPAL. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE’20).
ACM, 184–196. https://doi.org/10.1145/3368089.3409765

[15] IBM. 2024. WALA - Static Analysis Framework for Java. http://wala.sourceforge.
net/. [Online; accessed 11-March-2024].

[16] Ondvrej Lhoták. 2007. Comparing Call Graphs. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (San Diego, CA, USA) (PASTE’07). ACM, 37–42. https://doi.org/10.1145/
1251535.1251542

[17] Linghui Luo, Goran Piskachev, Ranjith Krishnamurthy, Julian Dolby, Eric Bod-
den, and Martin Schäf. 2023. Model Generation For Java Frameworks. In 2023
IEEE Conference on Software Testing, Verification and Validation (Dublin, Ireland)
(ICST’23). IEEE, 165–175. https://doi.org/10.1109/ICST57152.2023.00024

[18] Oracle. 2024. JVM(TM) Tool Interface. https://docs.oracle.com/en/java/javase/
20/docs/specs/jvmti.html. [Online; accessed 12-March-2024].

[19] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
2016. Call Graph Construction for Java Libraries. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE’16). ACM, 474–486. https://doi.org/10.1145/2950290.

2950312
[20] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.

2019. Judge: Identifying, Understanding, and Evaluating Sources of Unsoundness
in Call Graphs. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis (Beijing, China) (ISSTA’19). ACM, 251–261.
https://doi.org/10.1145/3293882.3330555

[21] Michael Reif, Florian Kübler, Michael Eichberg, andMiraMezini. 2018. Systematic
Evaluation of the Unsoundness of Call Graph Construction Algorithms for Java.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amsterdam, The
Netherlands) (SOAP’18). ACM, 107–112. https://doi.org/10.1145/3236454.3236503

[22] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical society 74, 2 (1953),
358–366. https://doi.org/10.2307/1990888

[23] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. 2021. PyCG: Practical Call Graph Generation in Python. In
43rd IEEE/ACM International Conference on Software Engineering (Madrid, Spain)
(ICSE’21). IEEE, 1646–1657. https://doi.org/10.1109/ICSE43902.2021.00146

[24] Olin Shivers. 1988. Control Flow Analysis in Scheme. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation
(Atlanta, GA, USA) (PLDI’88). ACM, 164–174. https://doi.org/10.1145/53990.54007

[25] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011. Pick Your
ContextsWell: UnderstandingObject-Sensitivity. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, TX, USA) (POPL’11). ACM, 17–30. https://doi.org/10.1145/1926385.
1926390

[26] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. 2018. On
the Soundness of Call Graph Construction in the Presence of Dynamic Language
Features - A Benchmark and Tool Evaluation. In Programming Languages and
Systems (Wellington, New Zealand) (APLAS’18). Springer, 69–88. https://doi.org/
10.1007/978-3-030-02768-1_4

[27] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the Recall of
Static Call Graph Construction in Practice. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE’20).
ACM, 1049–1060. https://doi.org/10.1145/3377811.3380441

[28] Zoltán Ságodi, Edit Pengő, Judit Jász, István Siket, and Rudolf Ferenc. 2022. Static
Call Graph Combination to Simulate Dynamic Call Graph Behavior. IEEE Access
10 (2022), 131829–131840. https://doi.org/10.1109/ACCESS.2022.3229182

[29] Frank Tip and Jens Palsberg. 2000. Scalable Propagation-Based Call Graph
Construction Algorithms. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Minneapolis,
MN, USA) (OOPSLA’00). ACM, 281–293. https://doi.org/10.1145/353171.353190

[30] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (Mississauga, Ontario, Canada) (CASCON’99). IBM Press, 13.

[31] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization. In Network and Distributed Systems
Security Symposium (San Diego, CA, USA) (NDSS’20). Internet Society, 2329–2344.
https://doi.org/10.14722/ndss.2020.24422

[32] Thomas Wetzlmaier, Rudolf Ramler, and Werner Putschögl. 2016. A Framework
for Monkey GUI Testing. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (Chicago, IL, USA) (ICST’16). IEEE, 416–423. https:
//doi.org/10.1109/ICST.2016.51

Received 16-DEC-2023; accepted 2024-03-02

https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.5381/jot.2017.16.4.a1
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/506315.506316
https://doi.org/10.1109/SCAM.2009.14
https://doi.org/10.1109/SCAM.2009.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.1145/3368089.3409765
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://doi.org/10.1145/1251535.1251542
https://doi.org/10.1145/1251535.1251542
https://doi.org/10.1109/ICST57152.2023.00024
https://docs.oracle.com/en/java/javase/20/docs/specs/jvmti.html
https://docs.oracle.com/en/java/javase/20/docs/specs/jvmti.html
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.2307/1990888
https://doi.org/10.1109/ICSE43902.2021.00146
https://doi.org/10.1145/53990.54007
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1109/ACCESS.2022.3229182
https://doi.org/10.1145/353171.353190
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1109/ICST.2016.51
https://doi.org/10.1109/ICST.2016.51

	Abstract
	1 Introduction
	2 State of the Art
	3 New Method for Dynamic Baselines
	3.1 Ground Truth and Approximations
	3.2 Approximation from Fixed Entry Points
	3.3 Approximation by Tests or Benchmarks
	3.4 Approximation by Input Corpus

	4 Our Method for Assessing Static CGs
	4.1 Corpus Generation
	4.2 Measuring Recall and Precision

	5 Empirical Studies
	5.1 Study Setup
	5.2 Quality of Dynamic Call Graphs
	5.3 Effect of Input Generation Techniques
	5.4 Comparing Static Call Graphs
	5.5 Threats to Validity

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

