
CodeMatch: Obfuscation Won’t Conceal Your Repackaged App
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann, Johannes Lerch, and

Mira Mezini
Technische Universität Darmstadt

Germany
{glanz,amann,eichberg,reif,hermann,mezini}@cs.tu-darmstadt.de,lerch@st.informatik.tu-darmstadt.de

ABSTRACT
An established way to steal the income of app developers, or to
trick users into installing malware, is the creation of repackaged
apps. These are clones of – typically – successful apps. To conceal
their nature, they are often obfuscated by their creators. But, given
that it is a common best practice to obfuscate apps, a trivial identi-
fication of repackaged apps is not possible. The problem is further
intensified by the prevalent usage of libraries. In many apps, the
size of the overall code base is basically determined by the used
libraries. Therefore, two apps, where the obfuscated code bases are
very similar, do not have to be repackages of each other.

To reliably detect repackaged apps, we propose a two step ap-
proach which first focuses on the identification and removal of
the library code in obfuscated apps. This approach – LibDetect –
relies on code representations which abstract over several parts
of the underlying bytecode to be resilient against certain obfusca-
tion techniques. Using this approach, we are able to identify on
average 70% more used libraries per app than previous approaches.
After the removal of an app’s library code, we then fuzzy hash the
most abstract representation of the remaining app code to ensure
that we can identify repackaged apps even if very advanced ob-
fuscation techniques are used. This makes it possible to identify
repackaged apps. Using our approach, we found that ≈ 15% of all
apps in Android app stores are repackages.

CCS CONCEPTS
• Security and privacy → Software reverse engineering; •
Software and its engineering → Software libraries and repos-
itories; • Applied computing→ System forensics;

KEYWORDS
library detection, repackage detection, obfuscation, code analysis
ACM Reference format:
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann,
Johannes Lerch, and Mira Mezini. 2017. CodeMatch: Obfuscation Won’t
Conceal Your Repackaged App. In Proceedings of ESEC/FSE’17, Paderborn,
Germany, September 04-08, 2017, 11 pages.
https://doi.org/10.1145/3106237.3106305

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106305

1 INTRODUCTION
Popular apps in the Google Play Store are installed on millions of
devices. This attracts malicious actors to create altered, repackaged
versions of those apps to steal the original owner’s revenue, or to
trick users and infect their mobile devices with malware. Detecting
such repackaged apps is therefore necessary for a secure and viable
app market.

Several techniques for repackage detection have already been
proposed and can be broadly classified as being code-agnostic [20,
42, 43], graph-based [10, 15, 16, 25, 47], user-interface-based [17,
41], and code-signature-based [9, 22, 39, 45, 46]. The Code-agnostic
approaches hash internal files of an app without considering the
file content or type; as a result, the hashes could be evaded by single
bit changes. Graph-based techniques derive the control-flow, data-
flow or call graph of the analyzed app and measure the similarity
by comparing isomorphic sub-graphs of the derived properties.
Given that graph matching is a hard problem, these approaches
potentially suffer from scalability issues [15]. Those approaches
which try to abstract from the concrete graphs to achieve scalability,
e.g., by using metrics, suffer from high false positive rates [10]. User-
interface-based techniques also construct a graph, but use views as
nodes and the transitions from one view to another as edges. These
graphs can easily be fooled by changing or introducing pseudo-
views. Code-signature-based approaches create signatures based
on an apps’ code to address the weaknesses of the graph-based
approaches; the proposed approach also belongs to this category.

Challenges. A challenge for all existing repackage detection tech-
niques are code transformations. Developers regularly minify and
optimize their apps to increase performance. Additionally, they
obfuscate their apps to protect their intellectual property. However,
attackers also apply obfuscation to hide malicious code and to evade
signature-based detectors, such as anti-virus software.

Current repackage detection techniques can only handle basic
forms of obfuscation such as one-by-one identifier renaming, re-
placing types, and reordering of fields and methods [7, 31]. More
sophisticated obfuscation techniques, such as moving classes be-
tween packages or changing Android API calls are not supported.
Our evaluation of Google Play Store apps revealed that 60% [21]
are at least partially obfuscated and that at least 20% use more
advanced techniques. The effectiveness of repackage detection is
further inhibited through the prevalent reuse of libraries in apps.
Wang et al. [39] reported that more than 60% of the sub-packages in
Android apps belong to library code. Hence, separating the library
code from the app code is necessary. Otherwise, apps which use
(nearly) the same libraries automatically share a large portion of the
overall code base and are always identified as repackages – even if

638

https://doi.org/10.1145/3106237.3106305
https://doi.org/10.1145/3106237.3106305

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif,

Ben Hermann, Johannes Lerch, and Mira Mezini

the apps’ code is completely different. A basic approach to filter out
non-obfuscated library code is to use package white-lists [10, 46].

Another challenge for repackage detection tools are apps gen-
erated by App Makers, e.g., apps-builder[8]. In that case, the vast
majority of the code base – the generator’s libraries – will be the
same and the rest will still be very similar. Current approaches, will
generally flag such apps as repackages.

Proposed Approach. To address the identified challenges, we pro-
pose a method for repackage detection that consists of a library
detection technique LibDetect and an app matcher CodeMatch,
whereby the latter uses the former.

LibDetect uses five hierarchically organized representations. The
first one is the original bytecode. The other representations each
abstract over some additional aspects, such as the used identifiers
or the control-flow. Hence, each higher level is less precise but po-
tentially enables a higher recall. As a result of the precision/recall
trade-off our library detection internally uses the five representa-
tions step-by-step. If a library method is only marginally obfuscated,
our approach will identify the method using a less abstract rep-
resentation when compared to methods that are more effectively
obfuscated. After identifying the library methods we regroup them
to match the potential original library classes. This enables us to
identify methods and classes which were moved across class/pack-
age boundaries. To evaluate the robustness of our representations,
we extracted roughly 200 sample library APKs from Maven Cen-
tral [32], obfuscated them with a state-of-the-art obfuscator (Dex-
Guard [33]), and tried to reidentify the original library methods.
For the evaluation of LibDetect, we randomly selected 1,000 apps
and identified the libraries manually to establish a gold standard.

Our app matcher CodeMatch uses fuzzy hashing [28] of an app’s
code to withstand various sophisticated obfuscation techniques and
optimizations, including; class relocating, slicing, duplication of
Android APIs in the app, code changes and code optimizations that
affect the detection. Additionally, it orders the app’s packages based
on the size of their classes. This addresses the challenges faced by
DroidMOSS [46] due to reorderings of classes and packages.

To test if an app is repackaged, CodeMatch performs the follow-
ing steps: First, it filters apps which were generated using App
Makers; these 2.4% of all apps can reliably be filtered using a white-
list of the main-package prefixes; they are required by Android’s
signing process and cannot be obfuscated. Second, it filters the
library code of apps using LibDetect. Third, it filters apps which
have less than ≈ 300 lines of code; such apps can not be classified
reliably by our approach. Fourth, it generates for each app the most
abstract/obfuscation-resilient representation and fuzzy hashes it.
Fifth, it compares the fuzzy hashes and if the similarity exceeds a
predefined threshold, the apps are marked as repackaged.

We prepared the evaluation of CodeMatch by fuzzy hashing the
descriptions of downloaded apps and randomly selecting 1,000
app pairs, whose fuzzy-hashed descriptions are at least 90% simi-
lar; we considered very similar descriptions as a first indicator for
repackaging. Afterwards, we installed and executed each app pair
to reconfirm their similarity manually. We used these results as the
ground truth, to evaluate the findings of CodeMatch, ViewDroid [41],
DroidMOSS [46], FSquaDra [42], and an repackage detection that
uses the centroid concept from physics [10].

Additionally, we evaluated the effects of CodeMatch independent
of LibDetect. To evaluate the effect that library detection has on
repackage detection, we executed two of the repackage detection
tools (DroidMOSS and Centroid-Based) additionally with LibDe-
tect and LibRadar as pre-filters and compared the results with the
other tools. To evaluate the effect of CodeMatch in isolation, we
additionally run it with a library white-list and with LibRadar. We
show that CodeMatch enables us to identify, in all library detection
configurations, up to 50% more obfuscated and repackaged apps
than the other approaches. In summary, we make the following
contributions:

• Five abstract code representations that enable library and
repackage detection with different precision/recall trade-
offs

• LibDetect, a technique to detect library code on a class
basis that outperforms the current most advanced library
detection tool LibRadar by 70%.

• CodeMatch, a technique that detects app repackaging, which
uses LibDetect to filter out libraries before measuring the
similarity of the apps.

• The first quantitative comparative evaluation of available
repackage detection approaches (CodeMatch, ViewDroid,
DroidMOSS, FSquaDra and a centroid-based approach)

The remainder of this paper is structured as follows. Section 2
presents the attacker model. Section 3 gives an overview of obfus-
cation techniques. Section 4 describes the state of the art. Section 5
presents the proposed approach. Section 6 discusses the results of
our evaluation. Section 7 examines threats to validity. Section 8
concludes the paper.

2 ATTACKER MODEL
We identified three kinds of attackers who create repackaged apps:

Attackers from the first category only apply basic changes/ob-
fuscations of an app that do not require a deep understanding and
configuration of obfuscators. Their primary goal is to avoid that
the repackaged app is identified by hash-based approaches. The
second category is able to make full usage of existing advanced
obfuscators to effectively hide their apps even if state-of-the-art
repackage detection approaches are used. The third category of
attackers are experts who are able to apply custom obfuscations.

Current repackage detection tools are able to identify repackaged
apps created by attackers from the first category. The proposed
approach – CodeMatch – is additionally able to identify repackaged
apps of attackers from category two.

3 CODE OBFUSCATION
We briefly introduce known obfuscation techniques, which were
seen in the wild [12, 36, 38] or are performed by known obfus-
cators [6, 13, 14, 26, 33, 37, 44]. Optimization techniques are also
included, because they introduce variance similar to obfuscation
and cause similar issues. Throughout the paper we will refer to
both techniques as obfuscation techniques

Name Mangling. In general, meaningful identifiers, such as
field, method, class, and package names, are replaced by meaning-
less, small strings; e.g., “Person”→ “aa”. Package identifiers can
even be reduced to the empty string; this just puts all classes in

639

CodeMatch: Obfuscation Won’t Conceal Your Repackaged App ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

the default package. Shortening names also improves the overall
performance due to the smaller code size [6].

Modifier Changes. Field, method, and class modifiers can be
changed most of the time without affecting the semantics of a pro-
gram. The modifications range from basic changes, e.g., raising the
visibility of classes or class members (e.g., “package private”→
“public”) or adding/removing the final modifier, to more com-
plex ones. E.g., transforming an instance method into a static one
requires an extra parameter to make the this reference explicit.

Structural Changes to a Method’s Implementation. A very
basic technique is to add NOPs - i.e., instructionswhich have no effect
on the method’s semantics, but modify the structure of the code.
The primary effects are a larger method body and shifted jump
targets of jump instructions, such as, if, switch or goto. More
involved changes, such as changing the kind of an if-instruction
(“if>”→ “if≤”), generally affect the method’s control-flow graph.

Code Slicing. Most applications do not use all features of the
libraries they include. Therefore, it is possible to remove unused
library code by creating a slice of essential functionality.

Code Restructuring. Common obfuscaters move classes and
methods between packages, classes and methods. Such changes
affect all call sites related to the changed class structure.

Method Parameters Manipulation. Reordering or removing/
adding unused method parameters affects both: the signature and
body of the method. This generally requires a corresponding update
of all call sites.

Constant Computation. Constant values are replaced by ex-
pressions that compute the constant; e.g. the constant 100 is re-
placed by the computation 10*10. A more advanced technique is
the encryption of strings which are then decrypted on demand.

Fake Types.Already existing classes, in particular from libraries
such as the Android SDK, are duplicated and used within the pro-
gram instead of the original class; e.g., “java.util.HashSet”→
“com.MySet”. In more advanced cases a field’s primitive type is
changed; e.g., from int to long.

Code Optimization. Classic code optimizations also influence
the code’s structure whenever methods are inlined, values propa-
gated, unused variables are removed, or control-flow is modified.

Hide Functionality. Sophisticated obfuscators hide functional-
ity by encryption, recompilation, compression, and virtualization
of selected classes (see Sharif et al. [36]). These techniques are cur-
rently the most effective protection mechanisms, but generally slow
down the app’s execution time, need advanced knowledge of the
app’s internal structure, or require manual code changes and are,
therefore, rarely used in practice.

4 STATE OF THE ART
This section presents the state of the art in the area of library and
repackage detection for Android applications.

4.1 Library Detection
Different repackage detection approaches [10, 46] use common
library white lists to detect and filter out library code. White lists
contain package names of known libraries and are compared with
package names contained in Android apps. Currently the largest
white list is collected by Li Li et al. [29]; it contains over 5,000

different names of library packages. The problem with using white
lists is that changing just one character of a library’s package name
can completely evade the library detection.

LibD [30] uses the sub-/super-package relation (inclusion) and the
inheritance relation between classes across packages (inheritance)
to construct one reference graph per library. These graphs can
then be compared with graphs extracted from an app. A graph is
constructed by using (sub-)package names as nodes and inheritance
or inclusion relations as directed edges.While this approach reduces
the information needed for comparing libraries to the package
level, it is vulnerable to changes that split or merge packages. If the
package hierarchy is changed the graph has a different number of
edges per node and cannot be compared with this approach.

LibRadar [31] is an approach for detecting library code in An-
droid apps. Given an app’s code, it extracts for each package a
feature vector consisting of the observed Android API calls. These
vectors are then hashed to get a fingerprint per package. These
fingerprints can then be compared against fingerprints of known
library packages. LibRadar is therefore resilient against the renam-
ing of packages, but cannot handle obfuscations that merge or split
packages that affect the vector of API calls.

The goal of LibScout [7] is to identify the version of an Android
API that is used in obfuscated code. It generates merkle-tree-hash
profiles in three steps. First, it replaces all types of a method signa-
ture that do not belong to the Android API with an “X” and then
hashes the transformed signature. Second, the method signature
hashes are sorted and hashed at the class level (class hashes). Third,
class hashes are again sorted and hashed per package (package
hashes). Finally, all hashes are used to identify library code. If the
package hash does not match, the class and the method hashes
are used. If no hash matches the code element is declared as non-
library code. The hashes are generated for different library versions
to make it possible to identify a specific version. Since the compu-
tation of the tree hash inherently reflects the implicit tree structure
between packages, classes and methods, LibScout is not robust
against cross-class/-package code restructurings.

To recap, the discussion above indicates the need for better
library detection that is able to handle library instances with a
changed package hierarchy. Additionally, beyond white lists, Li-
bRadar is the only approach that can directly be used as a pre-step
to repackage detection. Both white lists and LibRadar have their
specific limitations mentioned above. Moreover, neither they nor
the other approaches exploit information about the method bodies.
These limitations lead to poor recall, as our empirical comparison
of these techniques against our new approach will reveal in Sec. 6.

4.2 Repackage Detection
DroidMOSS [46] uses an app’s bytecode instruction names (mnemon-
ics) without arguments to compute a fingerprint by fuzzy hashing
the entire mnemonic sequence in the given order. A white list is
used for library filtering. DroidMOSS is vulnerable to Code Restruc-
turings because the fingerprint depends on the code order.

ViewDroid [41] detects repackaged code by building view graphs.
It extracts all Activity classes as view nodes and all actions as edges
e.g., button pushes or intent execution. The tool performs a sub-
graph similarity measurement to compare view graphs, which is

640

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif,

Ben Hermann, Johannes Lerch, and Mira Mezini

time consuming. ViewDroid is vulnerable to insertion of libraries
with own views, because it does not filter libraries. Furthermore, it
can only compare apps with more than three views. In a random
sample of 1,000 apps, 44.3% had less than 3 views.

Cuixia et al. [17] developed a tool that represents code in the
sameway as ViewDroid, but uses fixed size vectors of API call counts
per UI widget instead of whole views. The tool achieves a more
robust representation, but has the same drawbacks as ViewDroid.

FSquaDra [42] computes for all files referenced in the
MANIFEST.MF of an APK the hash values and compares them with
the extracted hashes of a potentially repackaged app. FSquaDra has
no library detection and the insertion of library code would change
the entire hash value of the code file. However, even the addition of
some (useless) resources (e.g., sound files or images) would change
the computed hashes and reduce the similarity with other apps.

Wukong [39] detects repackaged apps in three steps: First, it uses
LibRadar [31] to filter out library code. Second, it filters equivalent
apps by comparing two different fingerprints. Whereas the first is
generated the same way as LibRadar’s fingerprints, the second is
based on the frequency of API calls per package. Third, it generates
feature matrices which contain occurrence frequencies of all vari-
ables in different contexts, to compare them for repackage detection.
As LibRadar is used in the first two steps, the approach also suffers
from the same drawbacks. Libraries that remain undetected during
step one potentially cause a high false positive/negative rate in the
detection results. When one of the fingerprints is falsely matched
in step two, the repackage analysis is not executed.

DNADroid [15] filters out libraries by using package names and
class hashes. After that, DNADroid extracts the data-dependency
graph (DDG) of each app method and identifies repackaged apps
by comparing the app’s DDGs with the DDGs of other apps. The
library filtering step of DNADroid’s is vulnerable to renamings
affecting package names or class hashes. Determining sub-graph
isomorphism is generally computationally expensive [10], which
makes DNADroid unsuitable for repackage detection in huge app
stores, such as “Google Play Store”.

AnDarwin [16] detects repackaged apps in four steps: First, com-
parable toDNADroid, it computes the DDG for eachmethod. Second,
it computes for each DDG the frequencies of each underlying in-
struction (e.g., assignments or additions). Third, to filter out library
code it prunes vectors that occur more often among different apps
than a predefined threshold. Finally, AnDarwin hashes each remain-
ing vector and compares these hashes with hashes of potentially
repackaged apps [5]. The approach fails to filter out libraries that
are not used frequently enough according to the threshold.

The approach by Kai Chen et al. [10] constructs a control flow
graph per method and represents it as a centroid. The algorithm
filters out 73 popular libraries with a white list and matches the
centroids of the remaining methods pairwise. The advantage of
this approach is that similar centroids can be found efficiently, due
to the sorting capability of the centroids. However, it also has two
drawbacks. First, the detection depends on the sorting order, e.g., if
we filter first by the instruction count, we possibly miss methods
that are very similar by the invocation count. Second, when library
code is not filtered properly (see 4.1), it is considered as app code,
which renders compared apps artificially more similar.

To recap: Each repackage detection approach has its own specific
drawbacks; all share problems due to limitations of the library de-
tection in use. To address these problems, we designed CodeMatch,
which we evaluate against DroidMOSS, ViewDroid, FSquaDra, and
the centroid-base approach in Section 6. For FSquaDra and View-
Droid, the software was either available online or was made avail-
able to use upon request. The code for DroidMOSS and for the
centroid-based approach was not available; but we were able to
re-implement them based on the information available in their pub-
lications [10, 46]. The remaining approaches could not be acquired
from their authors and we were not able to re-implement them
based on their publications.

5 THE APPROACH
Our approach consists of two parts: First, an approach – LibDetect
– for the identification and removal of library code from a given
Android app (APK). Second, an approach that takes the app’s code
– after library removal – to find repackages. Both parts rely on
abstract representations of the app’s code to handle obfuscation. In
Section 5.1, we first present the different code representations before
we discuss LibDetect in Section 5.2, and CodeMatch in Section 5.3.

5.1 The Abstract Representations
To deal with obfuscation of methods and classes (see Section 3), we
use five different abstract representations of methods. The repre-
sentations build upon one another, each abstracting over some addi-
tional elements of the original bytecode compared to its predecessor.
Table 1 shows which representation addresses which obfuscation
techniques and Table 2 shows an example method compare(int,
int) in the first four representations.

We use the Bytecode (BC) of a method as is, to reliably identify
non-obfuscated library methods.

In theAddressless Representation (AR)we remove NOPs and
program counters and abstract over jump targets. In the latter
case, we replace forward jumps by “along” and backward jumps by
“back”. Taken together, this addresses respective Structural Changes
to a Method’s Implementation. Furthermore, we remove all method
modifiers to address Modifier Changes.

In the Nameless Representation (NR) we address Name Man-
gling and Fake Types. For that, we remove method names from the
method signatures and invocation instructions and replace non-
Android-API type references in return, parameter, field, array, and
invocation instructions by lists of the types’ Android-API super-
types. These lists represent those parts of the type information
that cannot be obfuscated. We obtain them by walking up the type
hierarchies, collecting all interface and class types defined in the
Android SDK/Java. After that, we order them alphabetically.

Table 3 compares the method signature’s AR and NR of Object
get(Key) declared by the app class MyHashMap, which is a clone
of Android’s HashMap. We assume that the app class Key inherits
only from Object and that MyHashMap inherits from
AbstractCollection, Map, and Object. While the signature’s AR
contains the app-specific type information, its NR is identical to
that of the get() method from Android’s HashMap.

641

CodeMatch: Obfuscation Won’t Conceal Your Repackaged App ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Table 1: Comparison of Obfuscation to Handling Entities.

Obfuscation BC AR NR SPR Fuzzy SPR LibDetect CodeMatch

Name Mangling − − × × × × ×

Modifier Changes − × × × × × ×

Structural Changes to a Method’s Implementation − × × × × × ×

Code Slicing × × × × × × ×

Code Restructuring − − − − − × ×

Method Parameters Manipulation − − − × × × ×

Constant Computation − − − × × × ×

Fake Types − − × × × × ×

Code Optimization − − − × × × ×

Hide Functionality − − − − − − −

Table 2: A compare(int, int) Method in BC, AR, NR, and
SPR Representation.

BC

0:iload_0
1:iload_1
2:if_icmpne→9
5:iconst_0
6:goto→19
9:iload_0
10:iload_1
11:if_icmpge→18
14:iconst_m1
15:goto→19
18:iconst_1
19:ireturn

AR & NR

iload_0
iload_1
if_icmpne→along
iconst_0
goto→along
iload_0
iload_1
if_icmpge→along
iconst_m1
goto→along
iconst_1
ireturn

SPR

load
load
if→along
const
if→along
load
load
if→along
const
if→along
const
return

Table 3: A Method Signature’s AR and NR.

AR NR

Declaring Type MyHashSet [HashSet, Object, Set]
Method Name get
Parameter Key [Object]
Return Type int int

In the Structure-Preserving Representation (SPR) we ad-
dress Method-Parameters Manipulation by sorting parameters al-
phabetically by the parameter type lists from NR. We also address
Fake Types by removing all type information and the indexes from
load and store instructions. For example, the instructions astore
and dstore_2 for storing an object or a double, are both repre-
sented by store. We unify size-dependent instructions, such as ldc
and ldc_w and also drop all string constants, e.g., log messages, to
address Constant Computations that exchange these. We provide an
exhaustive mapping from bytecode instructions to their SPR repre-
sentation as supplementary material[21]. Furthermore, we improve
our handling of Structural Changes to a Method’s Implementation
by representing all compare and jump instructions by if. However,
the jump direction, i.e., “along” or “back” is kept.

In the Fuzzy SPR we address stronger Code Optimizations, Con-
stant Computations and Code Slicing by fuzzy hashing the token se-
quence from our SPR with SSDEEP [28]. This enables us to uncover
similarity in the presence of such variation. SSDEEP chunks the
input sequence depending on the total sequence length, abstracts
each chunk to a single character, and concatenates all characters
to a hash. It then repeats this process with doubled block size. The
resulting signature consists of the two hashes and the block size.

5.2 LibDetect
LibDetect is a code-signature-based library-detection approach
which can detect a library even if the library was sliced down
to the required parts, library classes were moved to other pack-
ages, and/or instances of app classes were put into library packages.
This addresses shortcomings of existing approaches [10, 29, 31, 46]
which only identify complete library packages; searching for copies
of the entire library code may miss library fragments and simply
removing library packages may miss individual library classes and
may accidentally remove app code. LibDetect searches for copies of
library methods and later aggregates potential matches to classes,
i.e., LibDetect identifies library code at the granularity of classes.

Tomatch individualmethods, we need to deal with obfuscation of
both methods and classes, as both are referenced from within other
methods. Since obfuscation introduces variation in the method’s
code, we use our abstractions (Section 5.1) to counter its effects,
when we find library code with respect to a library database. In
this process, the degree of abstraction becomes a tradeoff between
precision and recall: If we match an app method to a library method
using a more concrete representation, it is more likely that the
match is correct and that we have fewer matches. However, we
might miss better obfuscated librarymethods. Using amore abstract
representation, we are more likely to find potential matches for
an app method, but may also falsely match the method with a
larger number of library methods. The overall process is depicted
in Figure 1.

Preparation. While APKs contain Dalvik Bytecode, our tooling
operates on Java Bytecode. Therefore, we use Enjarify [24] to trans-
form the Dalvik executable file (DEX) from the APK into a Java
archive (JAR). Enjarify is the most advanced DEX-to-Java-Bytecode
transformer currently available.

642

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif,

Ben Hermann, Johannes Lerch, and Mira Mezini

Figure 1: Toolchain to Identify Library Classes

Representation. We use the OPAL framework [19] to process the
JAR file. For each method, we generate the five representations and
extract the following information: the fully-qualified name of the
method, its instruction count, its enclosing class and its defining
package. This information is subsequently used to improve the
precision when identifying library classes.

Lookup. To find library methods to which an APK’s method
might correspond, we need a database of known library methods
which enables an efficient lookup. Therefore, we hash all five ab-
stract representations of known library methods using the SHA-1
function [18] (the two fuzzy hashes of the SPR are processed indi-
vidually) and build an index over the hashes of each representation.
These indexes point to the methods’ metadata.

Algorithm 1: Best-Matching Methods
Data:Method m
Result:Matching methods
matches←lookup(m.FQN ,m.BC);
if matches ! = ∅ then return matches;
matches←lookup(m.FQN ,m.AR);
if matches ! = ∅ then return matches;
for repr in m.{AR, NR, SPR, FuzzySPR1, FuzzySPR2} do

matches←lookup(repr);
if matches ! = ∅ then return matches;

return ∅;

Given anAPK’smethod, we useAlgorithm 1 to lookup potentially-
matching library methods in the reference database. The algorithm
looks for matches using our abstract representations in increasing
order of abstraction. The first two lookups search the database for
methods with the same fully-qualified name (FQN) and the same
BC or AR as the APK’s method. This allows us to precisely iden-
tify library methods that are not or only slightly obfuscated. All
subsequent lookups ignore the declaring classes’ FQNs, to address
Name Mangling. We perform another lookup with the AR this way
and proceed with the other representations, until we find at least
one match or otherwise declare the method as non-library code.
This way, we find potential matches even in the presence of strong
obfuscation, but identify only the matches with the highest match

confidence. Additionally, we avoid unnecessary large sets of method
matches on more abstract representations.

Figure 2: Aggregating Potentially-Matching Methods to Li-
brary Classes. The ellipsis are packages, rectangles are
classes and diamonds are methods. Green indicates library
and grey missing elements.

Method/Class Matcher. In the last step, we aggregate the APK
methods for which we found potentially-matching library methods
to library classes. Figure 2 shows the app’s structure, i.e., the pack-
ages, classes, and methods it contains. The code of each included
library corresponds to a fragment of this structure (b, c ellipse, C, D,
F rectangles and k, m, o, p diamonds). Due toCode Restructuring, this
fragment may have a different structure than the respective library
originally had. Also, due to Code Slicing (n’ diamond), elements of
the original library might be missing.

The aggregation first searches for app packages that contain
code from library packages. For each app package it collects all the
app methods with at least one matching library method. For each

643

CodeMatch: Obfuscation Won’t Conceal Your Repackaged App ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

unique library package from any such matching library method,
it counts the app methods that match a library method from that
package. We refer to this count as the app-to-library-method count.

The aggregation then continues for each such library package in-
dividually, in descending order of the app-to-library-method count.
For example, from app package c in Figure 2, two app methods o,p
match methods from the library package c’ and one app method
match methods from the library package b’. Therefore, we first
process library package c and then b.

For each library package, the aggregation computes a mapping
from app classes to library classes. To this end, it considers only
potentially-matching library methods from that library package.
It maps each app class with the library class to which the high-
est number of methods match. If multiple classes match equally
many methods, the aggregation picks the library class with the
more-similar size in terms of bytecode instructions. Each library
class is mapped only once. For example, the app class F in Fig-
ure 2 is mapped to the library class F’, because two of its methods
potentially match methods from F’.

Finally, we filter out class mappings where the app class has
less than half as many bytecode instructions as the mapped library
class, to avoid false positives due to a few methods that occur
very frequently, especially in our abstract representations. The app
classes that remain in the mapping are reported as library classes.

5.3 CodeMatch
Figure 3 depicts the workflow of CodeMatch.

Preparation. This step is the same as for LibDetect (see Sec-
tion 5.2), except that we additionally extract the developer’s public
key (as her unique identifier) for the APK.

Library Slicing. After preparation, CodeMatch uses a library-
detection tool, which reports detected libraries at either package- or
class-level granularity. It then removes the respective elements from
the APK’s codebase. If the library detection reports multiple library
classes, CodeMatch can be configured to abstract the reported class
names to whole packages and remove these instead.

Filtering. In addition to the library code removal, we filter two
kinds of apps that cannot reliably classified as repackages using
our approach. First, those that consist mainly of library code, plus
at most ≈ 300 lines of glue code [21]. We refer to such apps as
library apps. Second, apps generated using “App makers”. App
makers generate apps by processing user created ui designs. Apps
generated by the same App maker generally share a similar code
base without necessarily being repackages. We filter these apps
using a white list of 40 common used prefixes of known App maker
frameworks. This list is the result of a web search for Android App
maker frameworks.

Representation. In contrast to library code, which may be sliced
when only a part of the library’s functionality is used, an app’s
code is likely completely included in a repackage, as slicing would
break its functionality. Since we already removed library code from
our target APK, we assume that the remaining code almost entirely
corresponds to the potentially repackaged app’s code. Therefore,
we can use the identified app code for the comparison with other

apps’ code. To this end, CodeMatch represents each app class by
its own Android-API type list (as defined for our NR), the type list
of all its fields, and our most-abstract representation, SPR, for all
its methods. We chose the SPR because we do not want to miss
methods that were similar beyond Code Optimization.

To address Code Reordering, we sort the fields according to the
type lists and the methods according to their instruction count. To
address Name Mangling of package and class names, i.e., to have a
name-independent order of classes, we also sort the entire classes
by their size, i.e., the sum of sizes of each field, the number of
methods, and the instruction count. To address remaining smaller
differences that might have been introduced by obfuscation, we
fuzzy hash [28] the entire representation.

Comparison. Before we compare potentially repackaged apps, we
establish a threshold on the fuzzy-hash similarity, above which we
report analyzed apps as repackaged. We determine this threshold
by executing CodeMatch on 1,000 apps and searching for the best
F1-score (harmonic mean between precision and recall). We get the
best F1-score with a threshold of 30%.

To efficiently find potential repackages of an app, we build a
database of known apps which we processed as described in the
previous steps. Additionally, we indexed the respective developers’
public keys, to avoid reporting apps from the same developer as
repackages. We compare apps from different developers by the
fuzzy-hashed representation of the apps’ code using F2S2 [40],
which efficiently finds similarity matches based on the edit distance
between fuzzy hashes. If the similarity score between the target
app and a database app exceeds our threshold, we report a potential
repackage.

6 EVALUATION
The evaluation answers the following research questions:
RQ1 How robust is our code representation against state of the

art obfuscation? (Section 6.1)
RQ2 How effective is LibDetect compared to other library detec-

tion approaches? (Section 6.2)
RQ3 How effective is CodeMatch compared to other repackage

detection approaches? (Section 6.3)
In addition, we quantify the repackage share found by Code-

Match in the wild (Section 6.4).

6.1 Robustness of Code Representation
We assess the robustness of our code representations against ob-
fuscation by applying LibDetect to obfuscated apps for which we
know the libraries they use.

Setup. We downloaded all 193 APKs from Maven Central [32]
for which the build file (POM file) documents the used libraries.
We obfuscated these APKs with DexGuard [21], an extension of
ProGuard [6]; the obfuscator integrated into the Android develop-
ment environment and recommended by the Android developer
board [23]. Compared to ProGuard, DexGuard adds more advanced
obfuscation techniques that we have also seen; in particular, string
encryption and fake types. We use DexGuard with the four pre-
set configurations: Renaming, Optimization, String encryption, and

644

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif,

Ben Hermann, Johannes Lerch, and Mira Mezini

Figure 3: Toolchain to Identify Repackaged Apps

all of them Combined. DexGuard’s default configuration enforces
Renaming, because of that Renaming is always enabled.

During the obfuscation process DexGuard generates a detailed
mapping which identifies the origin of every method. Using this
information, along with the information about the libraries stored
in the APK’s POM file, we are able to assess whether a method is
correctly classified as belonging to a library.

Evaluation. Wefiltered all methods (≈ 26%) that have less than 10
instructions (e.g., simple getters and setters or default constructors);
such methods are indistinguishable after name mangling. After
that, we checked for each method whether it is a library method or
not and at which abstraction level (cf. Algorithm 1) the method is
classified as a library method.

Results. Figure 4 shows how often LibDetect’s method classi-
fication was able to correctly classify a method as belonging to
a library. For each configuration of DexGuard, the percentage of
found methods to total methods per project is visualized using stan-
dard box-plots. In case of Name Mangling we are able to correctly
classify more than 95% of all methods. And even if all obfuscation
techniques are combined we still identify over 70% of all methods
correctly. These results show that the approach provides a good
starting point for a library detection.

Figure 5 shows the importance of each representation. It de-
picts at which abstraction level/representation an obfuscated li-
brary method was detected. As expected, BC and AR could not
find any library methods. Both rely on names, which are changed
by the applied obfuscations in all configurations. However, these
representations are still valuable to identify methods that were not
obfuscated – which are still common in real obfuscated apps.

Interestingly, even if all obfuscation techniques are combined
the nameless representation (NR) already enables us to correctly
classify a method in the vast majority of cases (> 95%); this makes
NR the most relevant representation. Nevertheless, there are also
cases, where SPR and fuzzy SPR are needed to identify obfuscated
library methods and these cases increase by 0.5% per obfuscation
technique. Overall, the results indicate that our design decision to
consider the representations in increasing order of their level of
abstraction is helpful.

6.2 Library Detection
In this section, we present the results of comparing LibDetect with
other library detection approaches.

Figure 4: Detection Rates for DifferentDexGuard Configura-
tions.

Renaming Optimization String Encryption Combined
0

20

40

60

80

100

Pe
rc
en
ta
ge

BC
AR
NR
SPR

Fuzzy SPR

Figure 5: Relevance of Representations

Setup. We collected 8,000 Android related libraries: ≈7,000 from
Maven Central and ≈1,000 additional JARs collected manually by
searching for package names from the common-library list of Li Li
et al. [29] and the package names of LibRadar’s database [31] (cf.
short description of LibRadar in 4.1). The Maven Central JARs were
collected by analyzing the latest versions of the POM files with
dependencies to Android APIs (keyword “android” in the group ids
of the dependency). Using all 8,000 libraries we build the reference
database as described in Section 5.2.

For the evaluation of LibDetect in the wild, we randomly se-
lected 1,000 apps (99% confidence level; 5% confidence interval)
from five app stores (Anzhi, Google Play, App China, HiApk, and
Freewarelovers) and measured the precision and recall of LibDe-
tect, the common library white list (Common Libraries) by Li Li

645

CodeMatch: Obfuscation Won’t Conceal Your Repackaged App ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

Common Libraries LibRadar LibDetect
0
20
40
60
80
100

Pe
rc
en
ta
ge

Precision
Recall
F2

Figure 6: Average Precision and Recall of the Different Li-
brary Detection Approaches

et al. [29] and LibRadar [31]. We chose five different app stores
to avoid biases such as only small apps (Freewarelovers) or only
language-dependent apps (Anzhi). To determine the ground truth,
we first identified the libraries used by the apps through manual
code inspection. This enables us to assess both precision and recall.

Results. Figure 6 shows the average precision and recall of each
approach. Common Libraries has an average precision of 99.6 % and
a recall close to 9.3 % LibRadar has an average precision of 99.7 %
and recall of 11.5 %. LibDetect has an average precision of 80.2%
and the average recall is 87.2 %.

Discussion. Given that library code is the main reason for false
positives of code-based repackage-detection approaches, identify-
ing as many library classes as possible (i.e., a high recall) is very
important. To reflect this, Figure 6 shows the harmonic-balanced
F2-measure, which weights recall higher than precision. We find
that LibDetect identifies the majority of library code (F2-measure of
85.7%) and that it significantly outperforms the state-of-the-art tool
LibRadar (RQ2). LibRadar’s low recall 11.5% is due to its package-
level abstraction. As discussed above, the tool misses library classes
that are moved across package boundaries.

A careful analysis of the false positives/negatives of LibDetect re-
vealed that the false positives are primarily due to Activity and
Listener-classes that occur often in UI-intensive apps and which
can be found in app code as well as in library code. These classes
often have very similar functionality and differ only in their names.
Hence, they are indistinguishable to LibDetect, because the (original)
names are no longer available. LibDetect’s false negatives are caused
by the filtering of potentially obfuscated data-container classes of li-
braries; in general, a container class primarily defines several fields
along with respective getters and setters and, as discussed, such
short methods are filtered.

6.3 Repackage Detection
For the evaluation of CodeMatch, we collected all app descriptions
and the respective developer’s public keys (to differentiate between
them) from an archive of the Google Play Store [27] and fuzzy-
hashed the descriptions of each app with SSDEEP [28]. Afterwards,
we compared all fuzzy-hashed descriptions pairwise and randomly
selected 1,000 app pairs, which had at least 90%-similar descriptions
and were signed with different public keys. To identify which of
these pairs are actual repackages, we installed and executed the

app pairs on the emulator LeapDroid [35]. Subsequently, we man-
ually tagged them (as truly repackaged or not) by checking their
similarity in the following process:

(1) We checked whether the loading screen and main view
have the same structure and the same icons.

(2) In case of doubts, we then checked the actions, which could
be performed from the main view.

(3) If we were still not sure about the tag, we generated fake
accounts, installed needed additional software, and per-
formed all actions that were possible.

(4) If the above steps were insufficient, we also performed a
visual inspection of the de-compiled code. If the code of
both apps was similar, we classified the apps as repackages;
otherwise as “me-too” products.

Following this process, we manually identified 377 app pairs as
actual repackages (true positives) and used all 1,000 app pairs to
evaluate the precision and recall ofCodeMatch, FSquaDra [42], View-
Droid [41], DroidMOSS [46], and a centroid-based approach [10] to
which we refer as Centroid.

To assess the effect of the different library-detection approaches
on the overall repackage detection, we first removed all library apps
using LibDetect, as described in Section 5.3. These apps are generally
falsely identified as repackaged apps by the other approaches as
they have no specialized support for this kind of apps and we want
to avoid to bias the results. We exclude library apps (mostly < 300
LOC excluding library code), because it is practically impossible
to determine whether such apps are illegitimate repackages. For
example, most wallpaper apps only differ in the image, but are
generated apps, rather than repackages.

After that, we executed all repackage detectors that use some
library detection with all library detection approaches described in
Section 6.2: LibRadar (LR), LibDetect(LD), and the Common Libraries
white list (WL). If a repackage detector was unable to classify a
repackaged app, we counted it as false negative.

Results. Figure 7 presents the average precision and recall for the
different combinations of repackage- and library detection tools.
The results are grouped by the repackage detection approaches and
sorted by the average recall.

Combining LibDetect with any previous repackage-detection
approach results in an average precision of 86%, which is better than
all combinations of the respective repackage-detection approach
and any other library detection.

All combinations ofCodeMatchwith an existing library-detection
approach performed at least as good as the combinations of the
respective library detection with any other repackage-detection
approach. However, CodeMatch + LibDetect achieves the highest
average recall and F1-score.

Overall, we can conclude that LibDetect leads to significant better
repackage detection results and significantly improves the results
of Centroid when compared with the original results. Nevertheless,
CodeMatch + LibDetect gives the best precision and recall.

6.4 App Data-Provision & Insights
We used CodeMatch to assess the problem of repackaged apps in
the wild. For that, we downloaded 46,537 apps from five different
Android app stores and analyzed how many apps are repackaged

646

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif,

Ben Hermann, Johannes Lerch, and Mira Mezini

Dr
oid
MO

SS
& W

L

Dr
oid
MO

SS
& L

R

Dr
oid
MO

SS
& L

D

FSq
ua
Dr
a

Vie
wD

roi
d

Ce
ntr
oid

& W
L

Ce
ntr
oid

& L
R

Ce
ntr
oid

& L
D

Co
deM

atc
h &

WL

Co
deM

atc
h &

LR

Co
deM

atc
h &

LD
0

20

40

60

80

100

Pe
rc
en
ta
ge

Precision
Recall
F1

Figure 7: Average Precision, Recall and F1-Measure of the
Different Repackage Detection Approaches

Table 4: Analyzed Android Apps from Five App Stores

App Store Apps Lib Apps App Maker Repackaged

Anzhi [1] 18,889 1,707 9.0% 72 0.4% 2,757 14.6%
Google Play [27] 17,751 371 2.1% 1,018 5.7% 3,510 19.8%
App China [2] 4,577 1,260 27.5% 21 0.5% 396 8.7%
HiApk [4] 4,472 1,106 24.7% 6 0.1% 608 13.6%
Freewarelovers [3] 848 583 68.8% 0 0% 20 2.4%

Total 46,537 5,027 10.8% 1,117 2.4% 7,291 15.7%

across the individual stores. Table 4 shows the distribution of the
apps across the stores. We obtained the APKs from AppChina,
HiApk, and Freewarelovers using DroidSearch [34].

Table 4 reveals that up to 5.7% of the apps are created using App
makers (see Section 5.3) and—depending on the store—between
2.1% and 68.8% of the apps are library apps with less than 300 lines
of app (glue) code. We filtered these apps before computing the
number of repackaged apps. Overall, 7,291 (15.7%) of the 46,537
apps are repackages. The problem seems to be most relevant for
the Google Play store; nearly 20% of the apps are repackages.

7 THREATS TO VALIDITY
In the following, we discuss threats to validity related to our library-
detection and repackage-detection experiments.

We construct LibDetect’s reference database from all libraries
in LibRadar’s database, the latest Android related libraries from
Maven Central, all libraries from a public white lists [29] and a
popular-libraries list [11]. Nevertheless, the database may not con-
tain all libraries used by apps in our evaluation datasets. In this case,
LibDetect may fail to identify some library code and CodeMatch
may include this library code in the repackage detection. Both could
lead to other results than the reported ones, but – given the size
and quality of the data set – the overall error should be negligible.

Assembling a large, up-to-date reference database for LibDe-
tect might be unpractical. We argue, since we include only public

libraries listed in public databases and lists, that assembling the
database could be fully automated, which would allow frequent
updates without manual effort.

The evaluated apps fromMaven Central that we chose for library
detection may not be representative for apps in general. We chose
these apps because they document the libraries that they depend on.
This allowed us to construct a ground truth for the evaluation of
the library-detection tools (see Section 6.2). The experiment shows,
how well LibDetect can discover (library) code embedded in an app,
after the entire app has been obfuscated. The impact of specific
apps on the results of these experiments should be rather small.

To evaluate the impact of obfuscation on library detection we
used the obfuscator DexGuard, which applies renaming, optimiza-
tion, shrinking, and string encryption. To the best of our knowledge
no existing library detection handles more advanced techniques.

Our ground-truth dataset for repackage detection may not be
representative for apps in general. We chose our sample from the
apps of five different app stores. Therefore, we first filter the set of all
pairs of apps from the stores for pairs with similar descriptions, as
described in Section 6.3. Then we selected a random sample of 1,000
app pairs, which is representative at a confidence level of 99% and a
confidence interval of 5%. It is possible that this sampling strategy
introduces a bias, because repackages with dissimilar descriptions
are left out. However, the intent behind repackaging is to get users
to install the repackaged app instead of the original app, which
makes it likely that a similar description is used. Furthermore, the
app candidates were classified as repackaged or not-repackaged
through a manual review by one of the authors (cf. Section 6.3). It is
possible that our primary criterion, the similarity of the apps’ user
interfaces, may lead to some wrong classifications. Due to the high
effort of reviewing 1,000 app pairs, it was infeasible to confirm the
review results by additional reviewers.

8 CONCLUSION & FUTUREWORK
We presented an approach to detect repackaged apps that relies (1)
on a new advanced library detection approach and (2) the fuzzy
hashing of the app’s code to handle advanced code obfuscations. In
both cases, we rely on a hierarchy of five different code represen-
tations. Each higher-level representation abstracts over additional
parts of the code to counter more advanced obfuscation techniques.
The evaluation demonstrated the effectiveness of the approach in
matching code obfuscated using advanced obfuscators. The evalua-
tion further revealed that – depending on the level of obfuscation –
the different representations are necessary to match code.

When we applied our tool CodeMatch to real world apps taken
from Android App Stores, we were able to determine that 15% of the
apps can be found in repackaged form across different app stores.

Our implemention is available for download [21].

ACKNOWLEDGMENTS
This work was partially funded by the German Federal Ministry
of Education and Research (BMBF) within the Software Campus
project Eko, grant no. 01IS12054, the DFG as part of CRC 1119
CROSSING, as well as the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) within CRISP.

647

CodeMatch: Obfuscation Won’t Conceal Your Repackaged App ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

REFERENCES
[1] 2017. Anzhi App Marketplace. (2017). Retrieved 01/11/2017 from http://www.

anzhi.com/
[2] 2017. App China App Marketplace. (2017). Retrieved 01/11/2017 from http:

//www.appchina.com/
[3] 2017. Freeware Lovers App Marketplace. (2017). Retrieved 01/11/2017 from

http://www.freewarelovers.com/
[4] 2017. HiApk App Marketplace. (2017). Retrieved 01/11/2017 from http://www.

hiapk.com/
[5] Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06). IEEE, 459–468.

[6] Eric Lafortune at GuardSquare. 2017. ProGuard. (2017). Retrieved 01/11/2017
from http://proguard.sourceforge.net/

[7] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library
Detection in Android and its Security Applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM, 356–
367.

[8] Apps Builder. 2017. Apps Builder. (2017). Retrieved 01/11/2017 from http:
//www.apps-builder.com

[9] Jian Chen, Manar H Alalfi, Thomas R Dean, and Ying Zou. 2015. Detecting
Android Malware Using Clone Detection. Journal of Computer Science and
Technology 30, 5 (2015), 942–956.

[10] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on androidmarkets. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 175–186.

[11] CodePath. 2017. Must-Have Libraries. (2017). Retrieved 02/24/2017 from https:
//github.com/codepath/android_guides/wiki/Must-Have-Libraries

[12] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM,
184–196.

[13] Licel Corporation. 2016. DexProtector Android Obfuscator. (2016). Retrieved
01/20/2017 from https://dexprotector.com

[14] Licel Corporation. 2016. Stringer Java Obfuscator. (2016). Retrieved 01/20/2017
from https://jfxstore.com/stringer/

[15] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones: De-
tecting cloned applications on android markets. In Computer Security–ESORICS
2012. Springer, 37–54.

[16] Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. Scalable semantics-based
detection of similar android applications. In Proc. of Esorics, Vol. 13. Citeseer.

[17] Yang Cuixia, Zuo Chaoshun, Guo Shanqing, Hu Chengyu, and Cui Lizhen. 2015.
UI Ripping in Android: Reverse Engineering of Graphical User Interfaces and its
Application. In 2015 IEEE Conference on Collaboration and Internet Computing
(CIC). IEEE, 160–167.

[18] D Eastlake 3rd and Paul Jones. 2001. US secure hash algorithm 1 (SHA1). Technical
Report.

[19] Michael Eichberg and Ben Hermann. 2014. A software product line for static anal-
yses: the OPAL framework. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis. ACM, 1–6.

[20] Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, Manoj Singh Gaur, and Ammar
Bharmal. 2013. AndroSimilar: robust statistical feature signature for Android
malware detection. In Proceedings of the 6th International Conference on Security
of Information and Networks. ACM, 152–159.

[21] Leonid Glanz. 2017. CodeMatch Artifacts. (2017). Retrieved 06/30/2017 from
http://www.st.informatik.tu-darmstadt.de/artifacts/codematch/

[22] Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. 2014. Droidkin: Light-
weight detection of android apps similarity. In International Conference on Security
and Privacy in Communication Systems. Springer, 436–453.

[23] Google. 2017. Android Developers http://developer.android.com/tools/help/
proguard.html. (2017). Retrieved 01/11/2017 from http://developer.android.com/
tools/help/proguard.html

[24] Google. 2017. Enjarify. (2017). Retrieved 01/11/2017 from https://github.com/
google/enjarify

[25] WenjunHu, Jing Tao, XiaoboMa,Wenyu Zhou, Shuang Zhao, and TingHan. 2014.
Migdroid: Detecting app-repackaging android malware via method invocation
graph. In 2014 23rd International Conference on Computer Communication and
Networks (ICCCN). IEEE, 1–7.

[26] Smardex Inc. 2017. Allatori Java Obfuscator. (2017). Retrieved 02/20/2017 from
http://www.allatori.com

[27] Jake J. 2017. PlayDrone Archive Snapshot 10/31/2014. (2017). Retrieved
01/11/2017 from http://archive.org/download/playdrone-snapshots/2014-10-31.
json

[28] Jesse Kornblum. 2006. Identifying almost identical files using context triggered
piecewise hashing. Digital investigation 3 (2006), 91–97.

[29] Li Li, Jacques Klein, Yves Le Traon, et al. 2016. An investigation into the use of
common libraries in android apps. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 403–414.

[30] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. Libd: Scalable and precise third-party library detection in
Android markets. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 335–346.

[31] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast
and accurate detection of third-party libraries in Android apps. In Proceedings
of the 38th International Conference on Software Engineering Companion. ACM,
653–656.

[32] Service mark of Sonatype Inc. 2017. Maven Central. (2017). Retrieved 01/11/2017
from http://search.maven.org/

[33] GuardSquare nv. 2017. DexGuard Android Obfuscator. (2017). Retrieved
02/20/2017 from https://www.guardsquare.com/en/dexguard

[34] Siegfried Rasthofer, Steven Arzt, Max Kolhagen, Brian Pfretzschner, Stephan
Huber, Eric Bodden, and Philipp Richter. 2015. Droidsearch: A tool for scaling
android app triage to real-world app stores. In Science and Information Conference
(SAI), 2015. IEEE, 247–256.

[35] Huan Ren and Huihong Luo. 2017. LeapDroid. (2017). Retrieved 01/11/2017 from
http://www.leapdroid.com

[36] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Automatic
reverse engineering of malware emulators. In Security and Privacy, 2009 30th
IEEE Symposium on. IEEE, 94–109.

[37] PreEmptive Solutions. 2017. DashO Java Obfuscator. (2017). Retrieved 02/20/2017
from http://www.preemptive.com/products/dasho

[38] Xabier Ugarte-Pedrero, Igor Santos, Pablo G Bringas, Mikel Gastesi, and
José Miguel Esparza. 2011. Semi-supervised learning for packed executable
detection. In Network and System Security (NSS), 2011 5th International Confer-
ence on. IEEE, 342–346.

[39] HaoyuWang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. Wukong: A scalable
and accurate two-phase approach to android app clone detection. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis. ACM,
71–82.

[40] ChristianWinter, Markus Schneider, and York Yannikos. 2013. F2S2: Fast forensic
similarity search through indexing piecewise hash signatures. Digital Investiga-
tion 10, 4 (2013), 361–371.

[41] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.
ViewDroid: towards obfuscation-resilient mobile application repackaging detec-
tion. In Proceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks. ACM, 25–36.

[42] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina, and
Ermanno Moser. 2014. FSquaDRA: fast detection of repackaged applications. In
IFIP Annual Conference on Data and Applications Security and Privacy. Springer,
130–145.

[43] Min Zheng, Mingshen Sun, and John CS Lui. 2013. Droid analytics: a signature
based analytic system to collect, extract, analyze and associate android malware.
In 2013 12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications. IEEE, 163–171.

[44] Wu Zhou, Zhi Wang, Yajin Zhou, and Xuxian Jiang. 2014. Divilar: Diversifying
intermediate language for anti-repackaging on android platform. In Proceedings
of the 4th ACM conference on Data and application security and privacy. ACM,
199–210.

[45] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013. Fast,
scalable detection of piggybacked mobile applications. In Proceedings of the third
ACM conference on Data and application security and privacy. ACM, 185–196.

[46] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party android marketplaces. In Proceedings of
the second ACM conference on Data and Application Security and Privacy. ACM,
317–326.

[47] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and Alternative Android
Markets.. In NDSS, Vol. 25. 50–52.

648

http://www.anzhi.com/
http://www.anzhi.com/
http://www.appchina.com/
http://www.appchina.com/
http://www.freewarelovers.com/
http://www.hiapk.com/
http://www.hiapk.com/
http://proguard.sourceforge.net/
http://www.apps-builder.com
http://www.apps-builder.com
https://github.com/codepath/android_guides/wiki/Must-Have-Libraries
https://github.com/codepath/android_guides/wiki/Must-Have-Libraries
https://dexprotector.com
https://jfxstore.com/stringer/
http://www.st.informatik.tu-darmstadt.de/artifacts/codematch/
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
https://github.com/google/enjarify
https://github.com/google/enjarify
http://www.allatori.com
http://archive.org/download/playdrone-snapshots/2014-10-31.json
http://archive.org/download/playdrone-snapshots/2014-10-31.json
http://search.maven.org/
https://www.guardsquare.com/en/dexguard
http://www.leapdroid.com
http://www.preemptive.com/products/dasho

	Abstract
	1 Introduction
	2 Attacker Model
	3 Code Obfuscation
	4 State of the Art
	4.1 Library Detection
	4.2 Repackage Detection

	5 The Approach
	5.1 The Abstract Representations
	5.2 LibDetect
	5.3 CodeMatch

	6 Evaluation
	6.1 Robustness of Code Representation
	6.2 Library Detection
	6.3 Repackage Detection
	6.4 App Data-Provision & Insights

	7 Threats to Validity
	8 Conclusion & Future Work
	Acknowledgments
	References

