
UPCY: Safely Updating Outdated Dependencies
Andreas Dann

CodeShield GmbH
Paderborn, Germany

andreas.dann@uni-paderborn.de

Ben Hermann
Technical University Dortmund

Dortmund, Germany
ben.hermann@cs.tu-dortmund.de

Eric Bodden
Heinz Nixdorf Institute &

Fraunhofer IEM
Paderborn, Germany

eric.bodden@uni-paderborn.de

Abstract—Recent research has shown that developers hesitate
to update dependencies and mistrust automated approaches such
as Dependabot, since they are afraid of introducing incompatibili-
ties that break their project. In fact, such approaches only suggest
naı̈ve updates for a single outdated library but do not ensure
compatibility with other dependent libraries in the project. To
alleviate this situation and support developers in finding updates
with minimal incompatibilities, we present UPCY. UPCY applies
the min-(s,t)-cut algorithm and leverages a graph database of
Maven Central to identify a list of valid update steps to update a
dependency to a target version while minimizing incompatibilities
with other libraries. By executing 29,698 updates in 380 projects,
we compare the effectiveness of UPCY with the naı̈ve updates
applied by state-of-the-art tools. We find that in 41.1% of the
cases where the naı̈ve approach fails UPCY generates updates
with fewer incompatibilities, and even 70.1% of the generated
updates have zero incompatibilities.

Index Terms—Semantic versioning, Library updates, Package
management, Dependency management, Software maintenance

I. INTRODUCTION

Building software on top of open-source libraries and
frameworks is an established practice in commercial and
open-source Java projects to save costs and improve quality
[1]. However, the recent Log4Shell vulnerability has shown
that developers need to update outdated open-source libraries
quickly when a new vulnerability has been discovered. While
package managers, like Gradle and Maven, ease the updating
process by automatically integrating libraries as dependencies
and dependencies of those (so-called transitive), developers
still need to find a set of update steps manually to update
the library to a non-vulnerable version while also avoiding
to break the project. For a library that developers directly
integrated, finding an update is straightforward. However,
developers often need to update other libraries as well to avoid
incompatibilities. For a transitive library, it is even non-trivial
to figure out how to update it to a target version, as developers
have no direct control of its version. Consequently, studies [2],
[3], [4], [5], [6], [7], [8], [9], [10] show that most developers
hesitate to update dependencies since they are afraid that an
update may introduce unexpected regressions or unintended
side-effects. As a result, software systems remain vulnerable
to attacks through known vulnerabilities for extended periods.

State-of-the-art tools like Greenkeeper [11], Depend-
abot [12], and Renovate [13] create pull requests for updating a
library and check if the update breaks the project by executing
the compile and test command. Crucially, since these tools rely
on a project’s dependency test coverage, which is oftentimes

too low, they can only detect conflicting updates and breaking
changes to a small extent [14], [3], [6]. Especially, calls be-
tween (transitive) libraries are only rarely covered by project’s
tests; a recent study by Hejderup et al. [3] reports a coverage
of less than 21%.

Moreover, these tools only suggest updates for the single
outdated library but do not check if other libraries in the
project that depend on the outdated library must be updated
as well. In fact, a safe backward compatibility update must
satisfy multiple types of compatibility [1], [15], [3], [7]: if
the project uses the library directly, the update must be source
code compatible such that the project continues to compile;
if the dependency is transitive the update must be binary
compatible such that other libraries link with the new version;
if the library belongs to a framework, all libraries of that
framework must be updated consistently to ensure consistent
runtime behavior. Discovering, debugging, and resolving these
incompatibilities manually is cumbersome, and thus the main
reason that discourages developers from updating [10], [6].
Especially, resolving incompatibilities between (transitive) li-
braries is challenging as current tools only check for updates
for each library in isolation, while a project assembles more
than 36 dependencies on average that partially depend on each
other [16].

Existing work [3], [15], [1] provides strategies to assess
breaking changes between two versions of a library; either
source code, binary, or semantic-breaking compatibility is-
sues, but does not check relations between dependencies nor
supports developers for selecting updates that minimize the
number of incompatibilities to other libraries.

To remediate this situation, we present the graph based-
approach UPCY to support developers in eliminating vulnera-
ble or outdated dependencies (especially transitive ones) from
projects’ dependencies. UPCY finds a list of update steps
that updates a Maven dependency to a target version while
minimizing the number of incompatibilities respecting its use,
conflicting and framework dependencies, as well as source
code and binary incompatibilities. To this end, we built a Neo4j
graph database of the Maven Central repository representing
all artifacts, and their direct and transitive dependencies.
UPCY then maps the conditions that an update has to satisfy
to graph constraints for Cypher (Neo4j’s query language) and
uses a min-(s,t)-cut algorithm to identify update steps with
minimal incompatibilities.

We evaluate the approach on 1,325 well-tested, open-source

Java Projects sampled from GitHub by Hejderup et al. [3]. Our
evaluation shows that UPCY successfully finds updates with
fewer incompatibilities in 41.1% of the cases in which state-
of-the-art approaches fail, importantly, 70.1% of these updates
have zero incompatibilities. UPCY’s computed suggestions
require the update of two libraries on average to achieve safe
backward compatible updates, indicating that compatibility
can be maintained with reasonable effort.
To summarize, this work makes the following contributions:
• a comprehensive definition of the conditions a safe backward

compatible update has to satisfy (Section III),
• UPCY - an approach for finding safe updates using min-

(s,t)-cuts on a unified dependency graph, and their mapping
to Cypher to query Neo4j (Section IV)

• an evaluation of the approach on 1,325 well-tested, open-
source Java projects (Section V).

II. DEPENDENCY MANAGEMENT IN THE MAVEN
ECOSYSTEM

Java package managers, like Maven and Gradle, provide
tooling to ease the distribution, maintenance, and inclusion of
external third-party libraries from public open-source repos-
itories like Maven Central. To include a specific library,
developers specify the library’s unique identifier in the form
of the triple: group, artifact, and version (GAV) in a project’s
configuration file (pom.xml). The package manager automat-
ically downloads, includes, and configures the library as a
dependency of the project.

Based on the declared dependencies in the configuration
file, the package manager builds the project’s dependency
graph, specifying the dependencies the project includes and
their relations. Figure 1 shows an example dependency tree. In
this graph, nodes represent libraries - the root node represents
the project itself, and directed edges connect to dependent
libraries.

x u2

z

u1

Legend
s: is the project
u1,x: is a direct dependency of root
y: is a transitive dependency of root, but
 a direct dependency of x
u1, u2, u3: share the same group
U: blossom of u1, u2, u3

 source-code compatible
 binary compatible
 edge pruned in dep. tree

U

w

<<duplicate>>

t

s
(root)

y u3

v

Fig. 1. Maven Dependency Tree

A dependency is called a direct dependency of node n if
the dependency and n are connected through a path of length
one. Dependencies connected through a longer path are called
a transitive dependency of node n.

Although often visualized as a tree, strictly mathematically
speaking, a project’s dependency relations form a graph: a
single dependency node can have multiple predecessors since
multiple dependencies may depend on the same library, so-
called duplicates. For instance, the dependency t and z both
depend on dependency w in Figure 1. Similarly, multiple
dependencies may depend on the same dependency in different
versions, causing a so-called (version) conflict.

Java only supports a flat, linear classpath. Thus, a package
manager transforms the dependency graph into a directed,
rooted dependency tree. To create the dependency tree and
to resolve ambiguous relations like circular dependencies, du-
plicates, or conflicting versions, the package manager Maven
automatically picks the dependency that has the shortest path
from the root node, thereby shadowing all other versions of
that dependency [17], e.g., in Figure 1 the edge marked as
<<duplicate>> would be pruned in the dependency tree.

III. BACKWARD COMPATIBLE UPDATES

When developers aim to update a dependency, they have
to consider any update step carefully since their project may
unexpectedly suffer from regression-inducing changes, such as
bugs or semantic changes that break API contracts [3].

A. Dependency Graph Updates

Depending on the position of a library l in the dependency
tree, developers have to choose between multiple update
options to maintain compatibility with other libraries [18].
• if l is a direct dependency of the project, it can be simply

updated in the project’s pom.xml, e.g., u1 in Figure 1
• if l is a transitive dependency, developers cannot simply

increase their version as this would mean editing the source
code of a direct dependency over which they usually have
no control (or would require a fork). But they can
– transform the updated version of l to a direct dependency

of the project. Due to Maven’s shortest-path resolution
mechanisms, the direct dependency then shadows all other
(transitive) instances of this dependency,

– or check if any predecessor p ∈ pred(l) in the depen-
dency graph, lying on the path from project node to l,
can be updated to a newer version that itself depends on
a newer version of l, e.g., x of y in Figure 1. If such
a predecessor p exists, developers can transform p to a
direct dependency, thereby implicitly again shadowing the
existing, former version of l.

In all cases, developers have to assess the effect of the
library update on the project’s dependency graph, since every
update can introduce new (direct and transitive) dependencies
that may lead to conflicts or shadowing of existing libraries.
For instance, consider the duplicate dependency w in Figure 1.
If the dependency t is updated, and its new version t′ depends
on a new version w′ then w′ will shadow the dependency w
of z – whether desired or not.

With an increasing number of dependencies, duplicates, and
conflicts, the complexity to maintain compatibility between
all libraries in the dependency graph increases. Developers

must ensure that all nodes in the dependency graph that use
the updated library continue to compile, link, and execute
successfully [15]. A study by Wang et al. [1] showed that
this is difficult for developers to diagnose in practice, leading
to runtime exceptions and unexpected program behavior.

B. Source and Binary Compatibility

To ensure that an update is safe, the application pro-
gramming interface (API) of the updated library must be
compatible with the original one [15]. In particular, the API
types, methods, and fields must not be subject to changes that
prevent compilation, linking, or execution of formerly valid
client code.

In Java, but also other compiled languages, it makes sense
to distinguish between source and binary compatibility is-
sues [19], [15]. Source compatibility issues result in compila-
tion errors when the project is re-compiled against the updated
library. Binary compatibility issues result in conflicts in the
application binary interface (ABI). Binary compatibility errors
lead to failures during linking or invocation [20].

Within a dependency graph, a library must fulfill exactly
one of the two compatibility types for each incoming edge,
depending on the nature of the dependency that the edge rep-
resents, shown in Figure 1. To be able to re-compile the project
successfully, source code compatibility must be fulfilled for all
libraries (transitive and direct) whose APIs are directly invoked
in the project’s source code. Source code incompatible changes
are, for instance, removing public methods, types, or adding
checked exceptions to an API method, as these exceptions
must be handled by client code.

Binary compatibility must be fulfilled if a library is used
by other dependencies that cannot be re-compiled. All de-
pendencies in the dependency graph must continue to link
successfully to the bytecode classes in the updated library.
Examples of ABI incompatible changes are removing API
types, methods, fields, or changes in the method’s signature.

Note that binary compatibility does not imply source com-
patibility nor vice versa, although some compatibility issues
affect both, e.g., the removal of API types [15].

A study from Dietrich et al. [15] shows that source and
binary compatibility are regularly violated between different
versions of a library. Although tools like SigTest [21] check if
the API of a newer version is source code and binary backward
compatible, they do not support reasoning about the behavior
of several, intertwined libraries in the dependency graph. As
shown in a study by Bogart et al. [14], even approaches
like Semantic Versioning fail to indicate compatibility, as
library maintainers release new changes based on their self-
interpretation of backward compatibility.

C. Semantic Compatibility

Checking libraries for source and binary inconsistencies is
a necessary precondition for a safe update but is insufficient:
semantic compatibility is also required. Libraries with se-
mantic compatibility issues are source and binary compatible,
yet introduce incompatible runtime behavior that invalidates

formerly valid assumptions made in the client code, e.g., a
method formerly accepted null values as arguments while the
updated version throws a NullpointerException.

A sound and precise detection of semantic compatibility
issues is undecidable, however, several approaches exist that
use or synthesize test cases to detect semantic compatibility
issues w.r.t. the way the project uses a library [3], [1].

D. Blossom Compatibility

A study by Pashchenko et al. [22], found that projects
commonly include dependencies that share the same group,
indicating that they belong to the same framework. These
dependencies are highly interconnected with each other and
usually require the same version to run correctly. If a single
library is updated to a new version, all other libraries of the
framework must be updated. We refer to libraries with the
same group in the dependency graph as dependency blossoms:
they can be merged into a single dependency node like
regular blossoms in graphs, see Figure 1. To achieve safe
backward compatible updates, developers have to consider
such blossoms as typically only those are guaranteed to work
together by the framework authors [22].

A safe backward compatible update does not require com-
plete source code, binary, and semantic compatibility. Instead,
only those API types and methods that are actually invoked
during the project’s runtime must be compatible.

IV. UPCY: IDENTIFY SAFE UPDATES

The available options for updating a library depend on its
position in the dependency graph: (1) a direct dependency
can only be explicitly updated, (2) a transitive dependency
can either be transformed to a direct dependency, or any of
its predecessors can be transformed to a direct dependency
and updated if that predecessor depends on the new version.
To reduce the risks of introducing regressions and to keep
the effort for adapting the project low, one has to choose an
update option that leads to the least amount of source, binary,
semantic, dependency tree, and blossom incompatibilities.

To find compatible updates automatically, we created
UPCY. Given a Maven project, a dependency, and its target
version, UPCY finds a list of steps to update that library
with minimum incompatibilities. To do so, UPCY computes a
min-(s,t)-cut on the dependency graph with minimal violated
compatibilities and runs Neo4j queries against the full Maven
Central dependency graph to identify compatible updates of
the dependencies that lie on the cut. The output of UPCY
is a set of libraries that developers should add as direct
dependencies to update the library to the target version, as well
as the incompatibilities the update steps introduce (if any).

UPCY’s approach is shown in Algorithm 1. For a given
Maven project, library libToUpdate, and target version tar-
getVersion, UPCY computes a set of list of update steps
listUpdateSteps. The computed listUpdateSteps are dependen-
cies developers should add as direct dependencies to their
project to update the library to the target version with minimal
incompatibilities.

Algorithm 1 UpCy - Identifying Safe Backward Updates
Input: libToUpdate, targetVersion
Output: listUpdateSteps

/* build unified dep. graph */
1: depGraph ← buildDependencyGraph()
2: callGraph ← buildCallGraphSoot()
3: unifiedDepGraph ← unify(callGraph, depGraph)

/* naive Update */
4: updateGraph ← queryNeo4j(libToUpdate, targetVersion)
5: incmpts ← computeIncompatibilities(unifedDepGraph, update-

Graph)
6: if incmpts = ∅ then

/* the root node of the updateGraph is the updated library */
7: return (getRootNodes(updateGraph), incmpts)
8: end if

/* update based on min-(s,t)-cut */
9: minCuts ← computeMinCuts(unifedDepGraph, libToUpdate)

10: for minCut ∈ minCuts do
11: query ← mapToCypher(minCut, unifedDepGraph)
12: updateGraph ← queryNeo4j(query)
13: incmpts← computeIncompatibilities(unifedDepGraph, update-

Graph)
/* root nodes of the updateGraph are the nodes to add as direct deps */

14: if incmpts = ∅ then
15: return (getRootNodes(updateGraph), incmpts)
16: else
17: listUpdateSteps ∪ (getRootNodes(updateGraph), incmpts)
18: end if
19: end for
20: return listUpdateSteps

First, UPCY builds the project’s unified dependency graph
to assess which API calls the project and libraries invoke.
The unified dependency graph maps the sources and targets of
API calls to the libraries in the dependency graph. To create
the unified dependency graph, UPCY combines the project’s
dependency graph with the project’s call graph that is created
by passing the project’s classes and dependencies as an input
to the static analysis framework Soot [23] (lines 1-3).

Second, UPCY checks if a naı̈ve update, which is just
increasing the version number of the library, leads to incom-
patibilities (lines 4-8).

Third, UPCY tries to find an update with fewer incompat-
ibilities than the naı̈ve update using the min-(s,t)-cut algo-
rithm [24] if the naı̈ve update yields incompatibilities (line
9-19). To do so, UPCY computes all compatibilities the
update has to fulfill, maps them to Neo4j’s query language
Cypher, and runs the query against our graph database of
Maven Central (lines 11-12). The query returns the compatible
libraries and their direct and transitive dependencies in the
form of an updateGraph (line 12), with the dependencies to
add to the project.

Fourth, based on the updateGraph and unifiedDepGraph,
UPCY assesses the changes in the project’s dependency tree
and computes which API calls suffer from incompatibilities
given the new libraries in the updateGraph (line 5, 13). We
next detail further the various steps involved.

A. Building the Dependency Graph

To build the project’s dependency graph, UPCY uses the
Maven dependency graph plugin [25]. The plugin applies
Maven dependency resolution mechanisms and computes all
(transitive) dependencies the project includes. Figure 2 shows
an example a project dependency graph with project s, blos-
som u, and the library to update t.

The plugin allows the construction of the complete depen-
dency graph, including duplicate and conflicting dependencies,
which are not part of the actual dependency tree. Duplicate
dependencies occur when the project or dependencies defines
the same dependency, e.g., w is a duplicate dependency
because it is included by z and t. Conflicting dependencies
occur when the project or dependencies defines the same
dependency but with different versions. As described in the
Section II, Maven will pick the dependency closest to the
project (the shortest path in the dependency graph), thereby
shadowing all other versions.

s

x y z

t

v

w

<<duplicate>>

min-cut 1

min-cut 2
u1

u2
u3

u

Fig. 2. Exemplary min-(s,t)-cuts computed by UPCY for updating t

B. Identifying Library API Usage

We refer to the use of libraries as using API types, methods,
and fields from externally developed vendors. In particular, we
focus on the use of API methods in libraries as they are among
the most common forms of library usage. Thereby, we do
not distinguish between the use of direct or transitive libraries
but consider both equally. To identify the use of (transitive)
dependencies, UPCY statically constructs the call graph rep-
resenting the call paths between the project, its dependencies,
and the calls between the dependencies themselves, excluding
calls to the project or the Java Standard Library. To construct
the call graph, UPCY uses the class hierarchy analysis of the
static analysis framework Soot [23] with all project’s classes
as entry points, similar to Ponta et al. [22].

To create the unified dependency graph, UPCY maps the
sources and targets of the found call edges to the libraries
in the dependency graph. Each edge in the resulting graph
represents a set of API calls that must be binary or source,
and semantically compatible.

C. Graph Database of Maven Central

To explore the options for updating a specific library, all
versions of that library must be known to UPCY. Furthermore,
to evaluate which libraries the updated project will actually
include and which will be shadowed, UPCY needs to simulate
the impact of the update on the project’s dependency tree. To
do so, the complete dependency graph of the libraries that
are going to be updated (updateGraph), if developers add
them as direct dependencies to the project, must be known
to UPCY. Since the API of Maven Central does not give
information about a library’s (transitive) dependencies, we
created a complete dependency graph for 8.35 million artifacts
on Maven Central1 using the graph database Neo4j. The
database contains the (transitive) dependencies of each artifact,
as well as their scopes. The database enables us to query
libraries based on their properties (group, artifact, version) and
their graph structure, in our case their dependencies, using the
query language Cypher [26].

D. Identifying Compatible Updates

An incompatible update, if applied to the project, requires
high maintenance by developers. Developers are forced to
identify which (transitive) dependencies are affected by the
incompatible update and have to adapt their own project’s
code. If the incompatibility cascades to an API call between
dependencies, they also have to replace those since they
usually do not have control over the code and pom.xml of
these third-party dependencies. For instance, if the API calls
that u invokes on t are binary incompatible with the updated
version t′, u also needs to be updated.

As a step towards reducing incompatible updates, UPCY
computes a list of update steps and reports the API calls that
suffer from source, binary, and (potential) semantic incom-
patibilities. To identify update steps, UPCY implements two
approaches: First, for a naı̈ve update, UPCY computes the
number of incompatibilities that will occur if only the updated
library is included as a direct dependency. Second, using the
min-(s,t)-cut algorithm [24], UPCY explores complex update
steps, which potentially involve the update of multiple li-
braries, that minimize the number of incompatibilities between
the dependencies in the dependency graph.

E. Naı̈ve Update

Similar to approaches such as Dependabot [12], UPCY
simulates the transformation of the library update t to a
direct dependency. In contrast to existing approaches, UPCY
automatically computes changes in the dependency tree and
resulting incompatibilities, and thus helps developers to spot
regression by showing which API calls suffer from source,
binary, or potentially from semantic incompatibility and must
be adapted. To do so, UPCY queries the Neo4j database to
get the updateGraph of the updated library t, as shown in
Listing 1, and computes incompatibilities as described in detail
in Section IV-H.

1At the time of writing: August 2022

F. Minimizing Incompatibilities using Min-(s,t)-Cuts

If the naı̈ve update suffers from incompatibilities with
other libraries, UPCY tries to identify alternative update steps
for t using the unified dependency graph. In the project’s
unified dependency graph, all edges in this graph represent
a dependency relation (cf. Section II). Further, we assume
that each dependency relation also defines a use relation, as
it is recommended practice to declare every used dependency
also as a direct dependency [17]. Consequently, each edge
also represents a compatibility requirement; the target library
must be binary, source, and semantic, or blossom compatible
depending on its position in the dependency graph. For the
example graph in Figure 2, the edge from node u3 to t
specifies that u3 depends on t, and u3 invokes t’s API. Thus,
the update t′ must be binary compatible w.r.t. the API that u3
invokes. Note that the unified dependency graph may contain
edges to superfluous, unused dependencies. In the future, we
plan to prune such edges with the help of the call graph
and also add usage relations not represented by dependency
relations.

To identify update steps with a minimal number of in-
compatibilities between libraries, we need to separate the
unified dependency graph into two partitions: one containing
the project s, and one containing the library t, with a minimal
number of edges crossing the two partitions. This can be
optimally solved using the min-(s,t)-cut algorithm [24]. The
min-(s,t)-cut algorithm computes for a graph and a pair of
nodes (s, t) a cut of two separate partitions S and T with
given nodes s ∈ S and t ∈ T that is minimal w.r.t. the
weight of the edges crossing the partitions. Consequently,
only nodes that are connected by the edges that are part of
the cut must be ensured to be compatible with each other if
they are updated. Since UPCY aims to minimize the number
of incompatibilities between nodes, and each edge in the
dependency graph represents one compatibility requirement,
we assign all edges equal weight. The root nodes of the sink
partition, which are the target of the edges on the cut, are thus
candidates for updating by adding them as direct dependencies.

Crucially, simply computing the min-(s,t)-cut on the di-
rected unified dependency graph does not minimize the incom-
patibilities to other dependencies as the resulting cuts ignore
blossom, duplicate, and conflicting dependency compatibility.
For a directed graph, like the dependency graph, a min-(s,t)-cut
is equivalent to the maximum flow according to the max-flow
min-cut theorem [24], thus edges to duplicate or conflicting
dependencies located behind the updated library t, e.g., the
duplicate w, are ignored as the directed edge from z to w is
not part of a flow from s to t, and thus not part of the min-
cut. For instance, computing the min-(s,t)-cut on the directed
unified dependency graph in Figure 2 produces min-cuts of
the weight 1, e.g., cutting the edge between s and u2. First,
this min-cut ignores the blossom compatibility for u. Second,
and more importantly, the cut ignores the compatibility edge
between z and w.

To consider all compatibilities, UPCY computes the min-

(s,t)-cut on the undirected unified dependency graph with blos-
soms, e.g., u1, u2, u3 merged to blossom u. As a result, UPCY
computes min-cuts of weight 2 for the graph in Figure 2; e.g.,
min-cut 1 and min-cut 2.

For each found min-(s,t)-cut, UPCY tries to find compatible
updates for the root nodes of the sink partition S by querying
our Neo4j database of Maven Central for an updateGraph,
as we explain in detail in the next section. If Neo4j returns
a solution (a non-empty updateGraph), UPCY computes all
incompatibilities w.r.t. the (updated) libraries in the update-
Graph. For instance, for min-cut 1, UPCY checks if the calls
between s→ u2 and s→ x suffer from incompatibilities if u2
and x are updated, respectively, for min-cut 2, the calls s→ u2
and x→ y if u2 and y are updated. UPCY stops when it finds
a min-(s,t)-cut with zero incompatibilities or no further min-
cuts can be found, and returns the list of dependency updates
(listUpdateSteps) with the number of incompatibilities (cf.
Algorithm 1). Finally, developers can add the dependencies
in the computed update steps as direct dependencies to update
the vulnerable or outdated library.

G. Querying the Graph Database of Maven Central using
Cypher

For each found min-(s,t)-cut, UPCY queries our graph
database of Maven Central for updates of the root nodes
of the sink partition S to update the given library to the
target version. In particular, UPCY asks Neo4j to (1) find
new versions of the root nodes of the sink partition S that
already depend on the target version of the library to update
(2) that do not produce new incompatibilities – the (tran-
sitive) dependencies of the new versions of the root nodes
should be compatible with each other, and (3) the (transitive)
dependencies of those nodes (updateGraph). To avoid the
introduction of new incompatibilities, UPCY asks in step (2)
Neo4j to find versions of the root nodes that depend on the
same version of a duplicate or conflicting library, e.g., the
node w is included by transitive dependencies starting from
u2 and x in the sink partition of min-cut 1. As an example,
consider the min-cuts in Figure 2. For min-cut 1, UPCY tries to
find (1) an update of the nodes u2 and x, where u2 depends
on an updated version of t, (2) where u2 and x depend on
the same version of the (transitive) dependency w, and (3) all
(transitive) dependencies of the updates of u2 and x. For min-
cut 2, UPCY tries to find (1) an update of u2 and y where u2
depends on an updated version of t, (2) u2 and y depend on
the same version of the (transitive) dependency w, and (3) the
(transitive) dependencies of the updates if u2 and y.

To find update steps for a computed min-(s,t)-cut, UPCY
maps (1),(2), and (3) to Cypher, and then queries our graph
database of Maven Central for libraries that fulfill the gen-
erated requirements. In the following, we present the Neo4j
queries that UPCY creates on a conceptual, simplified level.
Note that in UPCY’s implementation, the queries are more
complex and intertwined with each other to evaluate them
together.

(1) Find versions of the sink’s root nodes that already
depend on the updated library: First, UPCY tries to find
the target version of the library t in the Maven Central
graph. To do so, UPCY generates for the library t in Fig-
ure 2 the Neo4j query shown in Listing 1. The query finds
(MATCH) all libraries t with the group, artifact, version (GAV)
groupT:artifactT:targetVersionT. Since the GAV is a unique
identifier, Neo4j only returns a single library. To ease matching
with the following queries (2) and (3), we relax the version to
be greater or equal than the target version.

Listing 1
CYPHER QUERY: UPDATE OF LIBRARY

MATCH (t:MvnArtifact
{group:"groupT",artifact:"artifactT",
version>="targetVersionT"})

Second, UPCY tries to find new versions of the root nodes
of the sink partition S that depend on the updated library t′,
if there is a path from the root node to t in the dependency
graph. The root nodes are the libraries that are the targets of
the edges cut by the computed min-(s,t)-cut. To do so, UPCY
generates for every root node r a Neo4j query as shown in
Listing 2. The query finds (MATCH) all libraries r, with the
group and artifact, groupR:artifactR, that have a (transitive)
dependency to the updated library t. The *1.. property in the
relation instructs Neo4j to search for paths of unlimited length
(direct and transitive dependencies of r). If t itself is a root
node r, UPCY skips the particular root node.

Listing 2
CYPHER QUERY: ROOT NODES OF SINK PARTITION

MATCH p=((r:MvnArtifact{group:"groupR",
artifact:"artifactR"}) -[:DEPENDS_ON*1..]-> (t))

(2) Find compatible root nodes for duplicate and conflict-
ing dependencies: If a sink partition has more than one root
node, UPCY checks if duplicate or conflicting dependencies
exist that are (transitively) included by two or more different
root nodes. For instance, consider the dependency w in Fig-
ure 2. The dependency w is transitively included by the root
nodes u and x in min-cut 1. No new incompatibilities should
be introduced if u and x are updated. Thus, new versions of
u and x should depend both on the same version of w.

To identify compatible updates of the root nodes, UPCY
traverses the graph backward for all nodes in the sink partition
to the root nodes. For min-cut 1 and the root nodes u and x,
UPCY yield the following results: u← u, u← t, u← t← v,
(u, x) ← (u, y) ← (t, z) ← w, and so on. Analogously, for
min-cut 2.

Then UPCY checks if two or more root nodes share a
(transitive) dependency, e.g., x and u share the dependency
w. We refer to those dependencies as a shared dependency,
and UPCY creates additional queries. To ensure that an update
is compatible, UPCY aims to find versions of u and x that

depend on the same version of w. To do so, UPCY creates for
the shared node w the query shown in Listing 3. As an update
of u or x may no longer be dependent on an instance of w,
the matching is optional, defined by the relationship property
0... If multiple solutions exist, only one solution is selected
(LIMIT 1).

Listing 3
CYPHER QUERY: SHARED DEPENDENCIES

MATCH
p1=((u:MvnArtifact) -[:DEPENDS_ON*0..]->

(w:MvnArtifact)),
p2 = ((x:MvnArtifact) -[:DEPENDS_ON*0..]-> (w))
WHERE u.group="groupU" AND w.artifact="artifactU"

AND w.group="groupW" AND w.artifact="artifactW"
RETURN p1, p2 LIMIT 1

(3) Query for the update graph: Finally, UPCY asks
Neo4j to return the complete updateGraph that are the root
nodes as well as their (transitive) dependencies. To do so,
UPCY generates for each root node r the Neo4j show in
Listing 4. The found update graph is returned to UPCY.

Listing 4
CYPHER QUERY: UPDATE-GRAPH

MATCH p=((r)-[:DEPENDS_ON*1..]->(:MvnArtifact))

H. Compute Incompatibilities

As a result of the Cypher queries, UPCY receives the up-
dateGraph, containing the library updates and their (transitive)
dependencies, which are going to be incorporated into the
project’s dependency tree.

For each dependency in the updateGraph, UPCY checks
if the dependency will have the shortest path in the updated
dependency tree, and thus will shadow all other instances.
If the dependency will become part of the project, UPCY
checks all edges in the unified dependency graph that target
the former instance of that dependency for incompatible API
calls. To do so, UPCY queries SigTest [21] and SootDiff [27],
for a list of API types and methods that are source or binary
incompatible and whose method bodies changed - indicating
potential semantic incompatibilities, and intersects them with
the API calls in the unified dependency graph.

As an example, assume the naı̈ve update t′ of t will
introduce a new version w′. UPCY checks if the API calls
that u invokes on t are binary incompatible with t′, and if the
API calls from z to w′ are compatible. To that end, UPCY
creates the list of incompatible APIs for t, t′ and w,w′ using
SigTest, and checks if the reported incompatible API types
also occur as API calls in the unified dependency graph. If
the dependency will not be part of the project because it is
explicitly overridden by an older instance, UPCY reports a
forward compatibility issue.

V. EVALUATION

A. Research Questions
To evaluate in how many cases UPCY can effectively sup-

port developers, we compare it to a naı̈ve updating approach,
which state-of-the-art tools apply.

In our first research question, we investigate in how many
cases naı̈ve updates fail, and more complex update steps
as computed by UPCY are required: RQ1: How often do
naı̈ve updates fail due to source code, binary or semantic
incompatibilities?

To assess the effect of dependency updates w.r.t. other
libraries, UPCY simulates the changes an update causes in
the dependency graph and tries to minimize the number of
incompatibilities with other libraries. Thus, we set to measure
how many dependencies a safe backward compatible update
has to fulfill conflict, duplicate, blossom, binary, and source
code compatibilities due to relations in the dependency graph.
With an increasing number of compatibilities an update has
to fulfill, the complexity for developers to reasons about an
update increases along with the helpfulness of UPCY: RQ2:
How many compatibilities does an update has to fulfill
(source code, binary, semantic, conflict, duplicate, and
blossom)?

To compare the effectiveness of UPCY to the naı̈ve approach
in practical environments, we measure how often our tool can
provide optimized suggestions with fewer incompatibilities:
RQ3: In how many cases does UPCY minimize the number
of incompatibilities compared to a naı̈ve update?

B. Study Objects & Methodology
Project Dataset: For the evaluation, we use the dataset

of well-tested, open-source repositories that use Java as the
primary language and Maven as the package manager sampled
from GitHub created by Hejderup et al. [3]. The down-
loadable dataset [28] assembles commits of 462 different
Maven projects. We were able to check out and build (mvn
compile) 380 projects successfully. These 380 projects con-
stitute in total 2,047 different Maven modules; 1,325 modules
have a non-empty dependency graph. A Maven project typ-
ically assembles one more (independently) compilable sub-
projects, each with its own set of dependencies, so-called
Maven modules.

The dataset is a representative sample of mid-sized, well-
tested, open-source projects with a significant number of
dependencies [3]. On average, each project assembles 668
methods, and 75% of the projects assemble around 588 or
fewer declared methods. The median of direct dependencies is
7, and for transitive dependencies 16, indicating an expansion
of transitive dependencies, which is in accordance with other
recent studies [22], [16].

Creating Library Updates: For developers, it is crucial
to update an outdated or vulnerable dependency quickly when
a new vulnerability has been discovered to eliminate that
dependency from the dependency tree.

By randomly choosing from each project up to 10 dependen-
cies and then randomly up to 10 newer versions to seed such

updates, we derive an adequate test set for comparing the naı̈ve
and UPCY’s approach, e.g., in cases where a vulnerability has
been disclosed.

In total, we created 29,698 such updates for 5,558 different
libraries in 1,325 modules: 8,327 updates of direct dependen-
cies, and 21,371 (71.96%) updates of transitive dependencies.
On average, we generated 22 (mean, 11.3 std) updates per
module, with a positively skewed distribution. 75% of all
modules in our sample had around 32 or fewer updates. The
largest project had 85 updates.

We only selected dependencies with the scope compile and
excluded dependencies with the scope testing, system, runtime,
provided since they are usually unavailable during compile-
time and often do not specify a version, and thus cannot be
statically checked.

C. Results

RQ1: Effectiveness of naı̈ve updates: State-of-the-art
tools apply a naı̈ve approach to update libraries by trans-
forming the library to a direct dependency and set it to the
new version in the pom.xml. We performed each update as a
naı̈ve update to evaluate the effectiveness of this approach. To
check if a naı̈ve update introduced source code, and binary or
semantic incompatibilities, we executed the Maven commands
mvn compile and mvn test two times: on the original
project and after applying the naı̈ve update.

If the mvn compile command fails during the second
invocation, the new library version introduced source code
incompatibilities, as the project’s code that invokes the updated
library’s API can no longer be compiled successfully. Because
it is recommended practice to include libraries whose API is
invoked as direct dependencies, compile failures usually occur
for direct dependencies only. If the mvn test command
fails during the second invocation, the new library version
introduced binary or semantic incompatibilities as formerly
valid test cases fail to link or run successfully with the updated
library.

Table I shows the results. 26,966 (90%) of the 29,698
updates compiled successfully and no tests failed. Only 2,732
updates actually result in compile (1,393) or test failures
(1,339), shown in column #total. The compile and test failures
occurred in 372 (28.07%) of the 1,325 modules. This is not
surprising: Since the 29,698 updates only affect 5,558 different
libraries, the majority of updates are version increments of
the same libraries in the same modules. Consequently, these
results indicate that the likelihood is high that if the update of
a library from version 1.1 to version 1.1.5 runs successfully,
updating that library to version 1.2 and version 1.4 will also
run successfully.

Note that Hejderup et al. [3] found that test cases of a
module typically cover less than 60% of their function calls to
direct dependencies, and the coverage drops to 21% for calls to
transitive dependencies, which was the majority of updates in
our dataset (71.96%). Since we execute mvn test to detect
binary incompatibilities and semantic breaking changes, the
number of failed updates is a lower bound only.

TABLE I
STATISTICS FOR FAILED UPDATES

failure type #total per module

mean std min median max

build or test 2,732 7.34 8.11 1 6 36
build 1,393 5.71 7.34 1 4 36
test 1,339 7.52 8.03 1 6 36

Findings from RQ1: 28.07% of the 1,325 modules
suffered from compile or test failures when applying naı̈ve
updates, which are implemented by state-of-the-art tools.

RQ2: Complexity of Library Updates - binary, semantic,
conflict, and blossom incompatibilities: To conduct a safe
backward compatible update, developers have to ensure that
no incompatibilities occur between the updated library, the
project, and other libraries in the dependency tree. To estimate
how complex this reasoning is, we computed how many binary
and potential semantic incompatibilities an update introduces,
and with how many other libraries compatibility must be
ensured.

To compute binary (ABI) incompatibilities between two
versions of a library, we used Oracle’s SigTest tool [21], [29],
which is specifically designed to compare the signatures of
two versions of the same library and report binary incompat-
ibilities.

To get an estimate of potential semantic incompatibilities,
we compare the bytecode of the former method’s body with the
new bytecode using the tool SootDiff [27]. SootDiff’s com-
parison was specifically designed to be resistant to changes
induced by various compilation schemes, and thus allows us
to check for bytecode equivalence even if different compilers,
Java versions, or source code changes have been applied to
one of the classes. If SootDiff finds a difference, this indicates
that the method’s semantics may have changed. Nevertheless,
only checking the bodies of API methods will cause transitive
changes in the preconditions to be missed. For instance, if a
public method mapi calls a private method mpriv , and only
mpriv has changed, we would miss the fact that mapi’s API
has changed if mpriv is excluded from the comparison [30].
Thus, we build the library’s call graph using Soot’s CHA
implementation and iterate over the call-chain of each API
method and check if the body of any method along the chain
has changed [30]. This approach yields an over-approximation:
SootDiff will detect and report a difference if a (potential)
semantic change exists. Note that the precise detection of
semantic changes is impossible, as described in Section III.

Figure 3 presents the results for binary and potential se-
mantic incompatibilities in the form of a violin plot, using
a log transformation with base 10 to deal with outliers.
Overall, 65.38% of all library updates suffer from binary
incompatibilities issues. On average, an update introduces 83

binary changed method bodies (semantic)

0

102

104

106

108

1010
#i

nc
om

pa
tib

le
 A

PI
s (

lo
g)

Fig. 3. Incompatibilities in Updates

TABLE II
BLOSSOM, CONFLICT, DUPLICATE, AND BINARY COMPATIBILITY FOR AN

UPDATE.

dependency mean std min median max

size of blossoms 4.19 3.92 1 2 30
#conflicts 1.71 1.73 1 1 16
#duplicates 2.53 3.12 1 1 31
#binary dependents 1.95 2.33 1 2 32

binary incompatibilities, and 75% of all libraries contain fewer
or equal than 35 binary incompatibilities.

The distribution of potentially semantic incompatibilities
(changed method bodies) suggests two classes of libraries. In
the first class - the peak at 0, we have library updates that do
not introduce any changes in existing method bodies. In the
second class - the peak at 127, we have library updates that
contain changes in more than 100 methods, indicating larger
refactorings.

To compute to how many other libraries a library has to
be binary and semantic compatible, we computed the library’s
connectivity in the dependency graph. As described in Sec-
tion IV-F, all edges in the unified dependency graph represent
a dependency and use relation between two dependencies, thus
the connectivity of a library shows to how many other libraries
compatibility must be ensured when updating. Table II shows
the results. A developer has, on average, to ensure binary
compatibility to 1.9 other libraries in the dependency graph,
and consider 1.7 conflicts and 2.5 duplicates. If a library is part
of a blossom, the blossom contains 4 libraries on average.
Thus, developers must not only reason about the relations
between their project and the library but also respect duplicate
and conflicting dependencies as they can induce inconsistent
runtime behavior [1].

Findings from RQ2: When updating a library, on aver-
age, developers need to maintain binary compatibility to
at least 2 further libraries, and consider conflicts with 1.7

TABLE III
COMPARISON UPCY VS NAÏVE UPDATES.

update count mean std min median max

naı̈ve 3,821 2.17 5.38 1 1 124
UPCY 3,821 1.15 1.29 0 1 15

fewer incompatibilities 1,572 0.62 1.38 0 0 15
more incompatibilities 14 2.36 0.49 2 2 3

incompatibility reduction 1.01 5.29 -2 0 124
complexity of min-(s,t)-cut 1.63 0.98 0 2 10

other instances of that library.

RQ3: Minimization of Incompatibilities by UPCY: To
evaluate the effectiveness of UPCY, we executed it on the
20,610 updates of transitive dependencies. To increase the
performance of the Neo4j database lookups, we restricted the
length for transitive dependencies to 5 and set a timeout of
180sec for a query. Thus, UPCY may miss update options in
complex scenarios in which shared nodes have a path length
greater than 5 or run exceptionally complex queries.

In total, UPCY could successfully compute for 16,884
(81.9%) of 20,610 updates if incompatibilities exist using
SigTest and SootDiff. For the other updates, the computation
of incompatibilities was unsuccessful since either the compi-
lation process of the unmodified module failed, the call graph
was empty, e.g., for test projects, or the tools SigTest failed.

Table III shows the descriptive statistics for the update
suggestions that on the UPCY computed using its min-(s,t)-cut
approach. Note that the table shows the number of libraries
to which the update introduces incompatibilities. It does not
give the absolute number of violated API calls.

The table shows that 3,821 of the naı̈ve updates produced in-
compatibilities, and thus UPCY computed alternative updates.
The mean in row UPCY shows that the updates that UPCY
produces on average have fewer incompatibilities than naı̈ve
updates. In only 14 cases, the min-(s,t)-cut update suggestions
had more incompatibilities than the naı̈ve update, shown in row
more incompatibilities, resulting in the negative min value in
row reduction.

For 1,572 (41.1%) updates, UPCY computed a min-(s,t)-
cut update with fewer incompatibilities. 1,102 (70.1%) of
these updates have zero incompatibilities. In cases in which
the naı̈ve update produced incompatibilities, UPCY computed
update steps that require more than one library to update
(min-(s,t)-cut complexity in Table III) or found a compatible
update of a preceding dependency in the dependency graph.
The high standard deviation of the naı̈ve updates shows
that the number of libraries to which an update introduces
incompatibilities heavily varies. The standard deviation for
UPCY is lower; UPCY consistently reduces incompatibilities.
While the number of updates for which UPCY computed a
min-(s,t)-cut seems low at first glance, this is not surprising
given the insights from RQ1: the majority of updates are

version increments of the same library, and the numbers show
that the likelihood is high that if a library update succeeded,
further increments of the version, i.e., another naı̈ve update,
will succeed, too.

On average, the updates computed by UPCY’s min-(s,t)-cut
approach require to update 1.63 (mean - in row complexity
of min-(s,t)-cut) different libraries. The biggest min-(s,t)-cut
that minimizes the incompatibilities requires the update of 10
libraries.

Figure 4 shows a simple example of the computed min-
(s,t)-cut for the dependency graph of the project mybatis-
shards in the dataset, requiring the update of two dependen-
cies to maintain compatibility. The outdated library in the
example is cglib:cglib:2.2.2. The library should be updated
to version 3.3.0. Instead of simply updating cglib to the
target version, which is the naı̈ve approach, UPCY computed
the min-cut cutting the edges between the project and the
target library cglib:cglib and asm:asm:3.3.1. Consequently,
the min-cut shows that both libraries cglib and asm needs
to be updated. Using the graph database of Maven Central,
UPCY found that the target version cglib:cglib:3.3.0 depends
on asm:7.1 and returns both in the updateGraph.

org.makersoft:
mybatis-shards:

1.0

min-cut

mysql:
my-sql-

connector:
5.1.12

cglib:cglib:
2.2.2

asm:asm:
3.3.1

org.spring-
framework:

blossom

commons-
logging:

1.1.1

...

commons-
beanutils:

1.8.3

Fig. 4. Example: Min-(s,t)-Cut in project mybatis-shards updating cglib

The results show that UPCY can effectively find update
suggestions with fewer incompatibilities than naı̈ve updates.
While other tools, which only apply naı̈ve updates, yield
incompatibilities, UPCY can successfully recommend com-
patible updates even if multiple libraries need to be updated
to achieve. As the dataset from Hejderup [3] exclusively
contains well-tested, open-source GitHub projects, the results
show that the need for updating multiple libraries to achieve
compatibility is prevalent in practical cases.

Findings from RQ3: UPCY can effectively reduce in-
compatibilities for 41.1% of the updates in which the
naı̈ve update lead to source or binary incompatibilities.

Required Computation Resources for UPCY: The com-
putation resources for UPCY are distinguished into resources
required for creating the Neo4j database of Maven Central,

which is only done once, and resources required for computing
a list of updates, which is done for a dependency update. We
created the Maven graph in Neo4j on a machine with 68GB
RAM and 12vCPUs within 10-11 days. The database has a
size of 22 GB.

For generating the list of updates UPCY executes two steps:
computing the min-cut, and querying Neo4j. The min-(s,t)-
cut computation takes ms only on the developer’s machine.
The time for querying the Maven dependency graph depends
on the machine hosting the database. In our case, queries
ranged from ms to a few minutes, depending on the number of
dependencies to update and the size of the min-cut. However,
the query performance can be further optimized, e.g., by using
indices or by splitting large queries into smaller ones. Neo4j
can handle millions of nodes; the Maven Central graph is
relatively small with 8.5 million nodes.

In our evaluation, we set a timeout limit of 180 sec
per Cypher query. Due to the timeout, the project
cassiomolin/jersey-jwt failed to complete.

VI. THREATS TO VALIDITY

Sampling libraries and versions randomly for creating up-
dates poses a threat to our results, as we may select libraries
that are either updated relatively rarely or frequently. To miti-
gate this risk, we used the sampled dataset from Hejderup [3]
of mid-sized, well-tested, open-source projects from GitHub
covering 5,558 different libraries in 1,325 Maven modules.

A threat to RQ1 and RQ3 is the fact that some of the
generated updates ask to update the selected library to the
latest release. We found that for some dependent libraries (that
are the ones preceding the library to update), no versions have
been published yet that depend on the latest release.

Similarly, some generated updates ask to update to a release
that has been skipped by dependent libraries. For instance,
we generated an update step from org.slf4j:slf4j-api:1.7.21 to
version 1.7.34 with predecessor logback-classic:1.17. There
exists no version of logback-classic that depends on slf4j-
api:1.7.34. Instead, recent versions depend on newer releases
of slf4j-api. In these cases, UPCY could only identify naı̈ve
updates.

The biggest threat for RQ3 is the completeness of our
database. In cases where our database is incomplete, UPCY
cannot identify valid update steps, making RQ3 an under-
approximation.

A further threat is that UPCY does not compute all min-(s,t)-
cuts for the unified dependency graph. Although Nagamochi
et al. [31] give an algorithm that finds all minimum cuts
efficiently, there are no published implementations of the al-
gorithm [32], and we refrain from implementing the algorithm
ourselves. Nevertheless, our evaluation shows that UPCY can
identify improved updates even if not all min-(s,t)-cuts are
considered.

VII. RELATED WORK

A. Studies: How Developers Update Dependencies

Researchers have conducted several studies investigating
practices around updating (vulnerable) open-source dependen-
cies [6], [9], [10], [4], [2]. The studies show that developers
typically hesitate to update libraries since they are afraid of
introducing breaking changes and refactoring efforts, and thus
prioritize other tasks. Consequently, Kula et al. [6] found for
81.5% of the studied dependencies that developers did not
update those dependencies even though they contain known
vulnerabilities.

Mirhosseini et al. [9] found that automated pull requests can
encourage developers to update dependencies quicker, but they
also suffer from high rates of rollbacks and gaps in continuous
integration, deferring developers from automatically updating.
Similarly, Bogart et al. [10] point out that developers perceive
automated pull requests as information overload, which do not
help to evaluate the impact of a specific update.

B. Update Compatibility Analysis

Dietrich et al. [15] studied the effect of source code and
binary compatibility issues in the Qualitas corpus. They found
that 75% of library updates introduced breaking changes, but
only a few resulted in errors. The authors emphasize that their
study only applies to the Qualitas corpus, which only has a few
projects with intertwined libraries. Wang et al. [1] conducted a
study on whether dependency conflicts may break a project’s
semantics. The study finds that dependency updates introduce
semantic breaking changes in 50 of the 128 sample Java
projects. To detect semantic breaking changes between two
versions, the authors present SENSOR. SENSOR applies call
graph analysis to detect changed API and applies automated
test generation to uncover semantic breaking changes.

Hejderup et al. [3] empirically investigate if test suits, which
are used by automatic pull requests, are reliable in detecting
breaking changes in updates. The study finds that test suits can
only cover 58% of direct and 21% of transitive dependency
calls, and thus are not reliable. To alleviate this situation, the
authors developed a static change impact analysis Uppdatera.
Uppdatera statically computes the difference between two
versions of a library based on the source codes’ abstract
syntax tree to identify methods with code changes. Using
a heuristic Uppdatera determines if the changes break the
method’s semantics. Then, Uppdatera computes the call graph
for the project and dependencies and evaluates if the project
invokes methods with breaking changes.

VIII. CONCLUSION

In this paper, we present UPCY - an approach to provide
suggestions for dependency updates. As recent research high-
lights, developers hesitate to update dependencies and mistrust
automated approaches, like Dependabot, since they are afraid
of introducing incompatibilities that break their projects or
lead to unwanted side effects. Thus, our approach aims to
support developers in finding updates with minimal incompat-
ibilities to other dependencies. To do so, UPCY investigates

the project’s dependency graph and explores multiple update
options, whereas state-of-the-art approaches naı̈vely focus on
the outdated library exclusively. UPCY uses the min-(s,t)-cut
algorithm to identify updates with minimal incompatibilities,
and queries a graph database of Maven Central for new depen-
dencies. To assess the impact of an update, UPCY determines
incompatible API calls using the static analysis framework
Soot. As an output, UPCY proposes a list of dependencies
that developers can add as direct dependencies to eliminate
a vulnerable or outdated dependency (especially a transitive
one) from their project’s dependency graph.

We evaluated the naı̈ve approach against UPCY on a
representative dataset of 1,325 well-tested, open-source Java
projects from GitHub. Our results show that UPCY can
effectively provide update suggestions that produce fewer
incompatibilities than current, naı̈ve approaches. In 41.1% of
the cases in which the naı̈ve update leads to incompatibilities,
UPCY could detect an update option with fewer incompatibil-
ities to other libraries, where 70.1% of the generated updates
even have zero incompatibilities.

We implemented UPCY for Java and its package manager
Maven as examples in this work. However, UPCY’s approach
can be adapted to other programming languages and package
managers as well.

UPCY can be directly applied to package managers with
a global dependency graph and use similar conflict resolu-
tion mechanisms as Maven, e.g., Python’s package manager
pip also permits only a single, non-conflicting version of a
dependency in a project. For package managers like node.js
that maintain a complete dependency graph per dependency,
permitting multiple conflicting versions, UPCY’s algorithm
needs to be adapted respecting that resolution mechanism.

In future work, a user study checking the understandability
of the reported violations and the acceptance of UPCY’s
update steps is beneficial. Further, we aim to improve the as-
sessment of incompatibilities by incorporating more advanced
techniques for impact assessment, for instance, the approach
provided by Hejderup et al. [3]. Our approach can be easily
adapted to minimize other metrics as well, e.g., decreasing the
number of violated API calls by using the number of calls as
an edge weight in the graph.

DATA AVAILABILITY

We have made the source code of UPCY, the evalua-
tion pipeline, and our data publicly available on GitHub
https://github.com/secure-software-engineering/upcy and Zen-
odo https://doi.org/10.5281/zenodo.7037673.

ACKNOWLEDGMENTS

This research was partially funded through the project Auto-
mated risk analysis with respect to open source-dependencies
(Hektor) by the German Research Foundation (DFG), under
grant number 160364472.

https://github.com/secure-software-engineering/upcy
https://doi.org/10.5281/zenodo.7037673

REFERENCES

[1] Y. Wang, R. Wu, C. Wang, M. Wen, Y. Liu, S. Cheung,
H. Yu, C. Xu, and Z. Zhu, “Will dependency conflicts affect my
program’s semantics?” IEEE Transactions on Software Engineering,
vol. 48, no. 07, pp. 2295–2316, jul 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2021.3057767

[2] J. Düsing and B. Hermann, “Analyzing the direct and transitive
impact of vulnerabilities onto different artifact repositories,” Digital
Threats, vol. 3, no. 4, feb 2022. [Online]. Available: https:
//doi.org/10.1145/3472811

[3] J. Hejderup and G. Gousios, “Can we trust tests to automate
dependency updates? a case study of java projects,” Journal of
Systems and Software, vol. 183, p. 111097, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221001941

[4] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E.
Santosa, A. Sharma, and D. Lo, “Out of sight, out of mind?
How vulnerable dependencies affect open-source projects,” Empirical
Software Engineering, vol. 26, no. 4, 2021. [Online]. Available:
https://doi.org/10.1007/s10664-021-09959-3

[5] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study
of dependency management and its security implications,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1513–1531. [Online].
Available: https://doi.org/10.1145/3372297.3417232

[6] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9521-5

[7] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu,
and Y. Liu, “An Empirical Study of Usages, Updates and Risks
of Third-Party Libraries in Java Projects,” Proceedings - 2020 IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2020, pp. 35–45, 2020. [Online]. Available: https://doi.org/10.
1109/ICSME46990.2020.00014

[8] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 2187–2200. [Online].
Available: https://doi.org/10.1145/3133956.3134059

[9] S. Mirhosseini and C. Parnin, “Can automated pull requests
encourage software developers to upgrade out-of-date dependencies?”
Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, pp. 84–94, 2017. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3155577

[10] C. Bogart, C. Kästner, and J. Herbsleb, “When it breaks, it breaks: How
ecosystem developers reason about the stability of dependencies,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), 2015, pp. 86–89. [Online]. Available:
https://doi.org/10.1109/ASEW.2015.21

[11] Greenkeeper. 2022-08-26. [Online]. Available: https://greenkeeper.io/
[12] Dependabot. 2022-08-26. [Online]. Available: https://dependabot.com/
[13] Renovate. 2022-08-26. [Online]. Available: https://www.

whitesourcesoftware.com/free-developer-tools/renovate
[14] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:

Cost negotiation and community values in three software ecosystems,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
109–120. [Online]. Available: https://doi.org/10.1145/2950290.2950325

[15] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical
study into evolution problems in Java programs caused by library
upgrades,” 2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering,
CSMR-WCRE 2014 - Proceedings, pp. 64–73, 2014. [Online].
Available: https://doi.org/10.1109/CSMR-WCRE.2014.6747226

[16] A. Dann, H. Plate, B. Hermann, S. E. Ponta, and E. Bodden,
“Identifying challenges for oss vulnerability scanners - a study & test
suite,” IEEE Transactions on Software Engineering, pp. 1–1, 2021.
[Online]. Available: https://doi.org/110.1109/TSE.2021.3101739

[17] Introduction to the dependency mechanism. 2022-08-26.
[Online]. Available: https://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html

[18] K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, and X. Peng,
“Interactive, effort-aware library version harmonization,” ESEC/FSE
2020 - Proceedings of the 28th ACM Joint Meeting European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 518–529, 2020. [Online]. Available:
http://doi.acm.org/10.1145/3368089.3409689

[19] Evolving java-based apis. 2022-08-26. [Online]. Available: https:
//wiki.eclipse.org/Evolving Java-based APIs

[20] Javase specification. 2022-08-26. [Online]. Available: https://docs.
oracle.com/javase/specs/jls/se8/html/

[21] Sigtest github repository. 2022-08-26. [Online]. Available: https:
//github.com/jtulach/netbeans-apitest

[22] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable Open Source Dependencies: Counting Those That Matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’18.
New York, NY, USA: ACM, 2018, pp. 42:1—-42:10. [Online].
Available: http://doi.acm.org/10.1145/3239235.3268920

[23] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot: A java bytecode optimization framework,”
in CASCON First Decade High Impact Papers, ser. CASCON
’10. USA: IBM Corp., 2010, p. 214–224. [Online]. Available:
https://doi.org/10.1145/1925805.1925818

[24] L. R. Ford and D. R. Fulkerson, “Maximal Flow Through a Network,”
Canadian Journal of Mathematics, vol. 8, pp. 399–404, nov 1956.
[Online]. Available: https://www.cambridge.org/core/product/identifier/
S0008414X00036890/type/journal article

[25] depgraph-maven-plugin. 2022-08-26. [Online]. Available: https://github.
com/ferstl/depgraph-maven-plugin

[26] Cypher query language. 2022-08-26. [Online]. Available: https:
//neo4j.com/developer/cypher/

[27] A. Dann, B. Hermann, and E. Bodden, “Sootdiff: Bytecode comparison
across different java compilers,” in Proceedings of the 8th ACM
SIGPLAN International Workshop on State Of the Art in Program
Analysis, ser. SOAP 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 14–19. [Online]. Available:
https://doi.org/10.1145/3315568.3329966

[28] Dataset. can we trust tests to automate dependency updates?
a case study of java projects. 2022-08-26. [Online]. Available:
https://zenodo.org/record/4479015/#.Yw0Bg-xBzUa

[29] Oracle - sigtest user guide. 2022-08-26. [Online]. Available: tps:
//docs.oracle.com/javacomponents/sigtest-3-1/user-guide/i

[30] D. Foo, H. Chua, J. Yeo, M. Y. Ang, and A. Sharma, “Efficient static
checking of library updates,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
791–796. [Online]. Available: https://doi.org/10.1145/3236024.3275535

[31] H. Nagamochi, Y. Nakao, and T. Ibaraki, “A fast algorithm for cactus
representations of minimum cuts,” Japan Journal of Industrial and
Applied Mathematics, vol. 17, no. 2, p. 245, 2000. [Online]. Available:
https://doi.org/10.1007/BF03167346

[32] M. Henzinger, A. Noe, C. Schulz, and D. Strash, “Finding All Global
Minimum Cuts in Practice,” in 28th Annual European Symposium
on Algorithms (ESA 2020), ser. Leibniz International Proceedings
in Informatics (LIPIcs), F. Grandoni, G. Herman, and P. Sanders,
Eds., vol. 173. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, pp. 59:1–59:20. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12925

https://doi.org/10.1109/TSE.2021.3057767
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
https://www.sciencedirect.com/science/article/pii/S0164121221001941
https://doi.org/10.1007/s10664-021-09959-3
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1145/3133956.3134059
https://dl.acm.org/citation.cfm?id=3155577
https://doi.org/10.1109/ASEW.2015.21
https://greenkeeper.io/
https://dependabot.com/
https://www.whitesourcesoftware.com/free-developer-tools/renovate
https://www.whitesourcesoftware.com/free-developer-tools/renovate
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/110.1109/TSE.2021.3101739
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://doi.acm.org/10.1145/3368089.3409689
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://docs.oracle.com/javase/specs/jls/se8/html/
https://docs.oracle.com/javase/specs/jls/se8/html/
https://github.com/jtulach/netbeans-apitest
https://github.com/jtulach/netbeans-apitest
http://doi.acm.org/10.1145/3239235.3268920
https://doi.org/10.1145/1925805.1925818
https://www.cambridge.org/core/product/identifier/S0008414X00036890/type/journal_article
https://www.cambridge.org/core/product/identifier/S0008414X00036890/type/journal_article
https://github.com/ferstl/depgraph-maven-plugin
https://github.com/ferstl/depgraph-maven-plugin
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://doi.org/10.1145/3315568.3329966
https://zenodo.org/record/4479015/#.Yw0Bg-xBzUa
tps://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/i
tps://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/i
https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1007/BF03167346
https://drops.dagstuhl.de/opus/volltexte/2020/12925

	Introduction
	Dependency Management in the Maven Ecosystem
	Backward Compatible Updates
	Dependency Graph Updates
	Source and Binary Compatibility
	Semantic Compatibility
	Blossom Compatibility

	UpCy: Identify Safe Updates
	Building the Dependency Graph
	Identifying Library API Usage
	Graph Database of Maven Central
	Identifying Compatible Updates
	Naïve Update
	Minimizing Incompatibilities using Min-(s,t)-Cuts
	Querying the Graph Database of Maven Central using Cypher
	Compute Incompatibilities

	Evaluation
	Research Questions
	Study Objects & Methodology
	Results

	Threats to Validity
	Related Work
	Studies: How Developers Update Dependencies
	Update Compatibility Analysis

	Conclusion
	References

