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Abstract
In order to achieve a higher reusability and testability, static
analyses are increasingly being build as modular pipelines
of analysis components. However, to build, debug, test, and
evaluate these components the complete pipeline has to be
executed every time. This process recomputes intermedi-
ate results which have already been computed in a previ-
ous run but are lost because the preceding process ended
and removed them from memory. We propose to leverage
runtime reusability for static analysis pipelines and intro-
duce SootKeeper, a framework to modularize static analyses
into OSGi (Open Service Gateway initiative) bundles, which
takes care of the automatic caching of intermediate results.
Little to no change to the original analysis is necessary to use
SootKeeper while speeding up the execution of code-build-
debug cycles or evaluation pipelines significantly.

CCS Concepts •Software and its engineering→Reusabil-
ity; •Theory of computation→ Program analysis

Keywords static analysis, modularity

1. Introduction
The development of static program analyses has become
a complex job. Projects such as FlowDroid [2] (29,890
SLOC) or FlowTwist [9] (27,929 SLOC) already provide a
large codebase and are themselves based on the frameworks
Heros [3] (8,243 SLOC) and Soot [18] (379,248 SLOC).
Ensuring a correct yet extensible codebase is not only a task
for framework providers but also for developers of static
analyses.

Therefore, components of these analyses have to be
reusable and testable. In previous work, we advocated static
modularity to improve the reusability and testability of anal-
ysis code [8]. Analysis concerns were split into separate

independent classes so that they can be reused by config-
uration in order to express different analyses in the same
domain (i.e. data-flow analysis). They can be tested both
individually and in an integrated state.

However, even a well-designed and modularized analysis
is always performed from scratch in every execution. Static
analysis frameworks, such as Soot, perform a number of ba-
sic transformations (e.g. SSA) and analyses (e.g. a call graph
analysis) on the code before the actual analysis under devel-
opment is run. These basic steps may take up a considerable
portion of the total runtime of an analysis, when considering
the investigation of large code bases such as the Java Class
Library (JCL). This can be problematic during the develop-
ment of static analyses when rerunning the basic steps for
each implement-test-debug cycle dramatically slows down
development. It also can affect the overall runtime of an
evaluation pipeline which compares different analysis im-
plementations against each other.

In this paper, we propose to modularize static program
analyses w.r.t. runtime reusability. We implemented our ap-
proach in a framework named SootKeeper which uses OSGi
(Open Service Gateway initiative) modularity [12] to split
analyses into small compartments which can be run sep-
arately and even in parallel. We leverage a key feature of
OSGi modularity which is that modules (i.e. bundles in
OSGi terminology) remain active in memory after a com-
pleted run. This allows us to speed up the debug cycle of
downstream analyses by running only modified analysis
modules using the precomputed results of the upstream anal-
yses, which remain in memory as long as the framework is
active or until they are invalidated. SootKeeper provides an
API and infrastructure to develop, run, test and debug mod-
ular static analyses. Our approach is presented in Section 2.

By using code bases and analyses of various size and
complexity we measured the possible speedup that can be
achieved. Results show that our approach can significantly
help in decreasing developer idle time during the develop-
ment of static analyses when there is a stable overhead from
upstream analyses. We present the results of these experi-
ments in Section 3.
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Figure 1: Example for an Analysis Pipeline in SootKeeper

We present related work and alternatives to our approach
in Section 4 and conclude the paper in Section 5 with a
summary and a look at future challenges.

2. Approach
Most implementations of static analyses can be seen as a
pipeline of distinct modules, where there is a clear chain of
dependencies. For instance, most analysis frameworks parse
the targeted code and generate an intermediate representa-
tion in order to enable further analyses (e.g., control flow
analysis, call graph computation, aliasing analysis). Results
of such analyses themselves can be required for even more
complex ones.

Splitting an analysis into modules can provide significant
gains in term of maintainability, extensibility and reusability.
With SootKeeper we aim to facilitate this while simultane-
ously providing runtime efficiency improvements. Develop-
ers of static analyses are able to reuse intermediate results
from upstream analysis modules while working on down-
stream analysis modules or comparing different downstream
analysis implementations in an evaluation pipeline.

SootKeeper is based on the OSGi modularity framework.
Its components and the individual analysis modules are rep-
resented as OSGi bundles. SootKeeper consists of two main
bundles: (1) the framework component, which provides the
API that has to be used by every analysis module, and (2)
the container component, which provides infrastructure to
control analysis modules registered in SootKeeper.

Figure 1 shows an example scenario with three analy-
sis modules. SootKeeper’s container and framework bun-
dles are loaded (and active) within an OSGi container. The
same holds for the bundles for analysis modules A, B, and C.
Each analysis extends the framework bundle. In this exam-
ple module A requires the results of module B for its anal-
ysis. The container controls the execution of the respec-
tive modules in the proper order and allows for interaction
through OSGi actions (e.g. using the shell).

Transforming an Analysis After identifying modules in
the analysis pipeline, all new analysis modules have to im-

plement interfaces from the framework module in order to
be applicable for SootKeeper. The IAnalysisConfig and
IAnalysisResult interfaces are used to implement repre-
sentations of configurations and analysis results. In order
to bind an actual analysis to the module the Abstract-

AnalysisService class has to be extended. It is parame-
terized over the IAnalysisConfig and IAnalysisResult

implementations of the module. Implementing classes have
to provide the following information:

A name for the the analysis module by implementing the
getName method.

Dependency information by implementing the getDepend-
OnAnalyses method.

A configuration parser to leverage command line argu-
ments for the current analysis in an implementation of
the parseConfig method.

A configuration converter in an implementation of the
convertConfig method which will be used to transform
configuration options for upstream analyses the current
modules depends upon.

An analysis implementation in the runAnalysis method.

Finally, an analysis module has to provide an implemen-
tation of the AbstractAnalysisActivator class which
handles the service registration in the OSGi lifecycle.

When running an analysis module the framework mod-
ule takes care of several actions. All modules which this
module depends on will be automatically executed in par-
allel (if their dependencies allow for this) using the correct
configuration. The results of every individual analysis for
each configuration will be cached for later use. If an anal-
ysis gets updated the corresponding caches will be cleared
transitively, which also includes the results of analyses that
depend on the updated one.

The Lifecycle of an Analysis As an example consider a
dead-code analysis (DCA) which depends on preliminary
analyses from Soot, e.g. control-flow graphs and an interme-
diate representation of the target program. Figure 2 provides
an overview about the abstract control flow of SootKeeper in
this example. In the following we explain the steps taken for
the first run and all subsequent runs.

Figure 2a shows the execution of the dead-code analysis
starting with the invocation of the container component (1).
The container component identifies the bundle for the dead-
code analysis and requests parsing of configuration data and
the setup of the analysis component (3). During this process
dependencies of the dead-code analysis module are resolved.
Since there is no data from prior executions in the container
component, the dead-code analysis module converts the con-
figuration data to the format necessary for the Soot module
and triggers its execution (4). As the Soot module does not
have any additional dependencies, it configures and executes
the requested analysis and stores the result in the container
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Figure 2: Example of an Analysis Lifecycle

component (5). The result of this analysis is then used in the
execution of the dead-code analysis (6) which in turn stores
its result in the container component.

Now consider that the dead-code analysis is modified by
its developer. She recompiles it and updates the module in
the container. This will automatically invalidate the cached
result of the previous DCA run. Nevertheless, Soot’s result
will be still in memory. Figure 2b shows the steps of Soot-
Keeper taken in the next execution of the DCA module.
Steps (1)-(3) remain the same in this process. However, dur-
ing step (4) the existing result of the previous Soot run is
found in the container. As the result has not been invalidated
it is used in the DCA analysis in step (5) which stores its new
result in the container for further downstream analyses (not
shown here).

There is no retention policy for the caches, since the ben-
efits of using SootKeeper are subverted, if upstream analyses
are rerun very often with different settings. Caches are only
cleared if the corresponding analysis or other upstream anal-
yses are reloaded.

Integration For convenience, SootKeeper provides a Soot
module which wraps Soot and all its non-OSGi dependen-
cies in an OSGi bundle. This bundle implements the neces-
sary SootKeeper interfaces and provides basic configuration
and result classes. These may already be sufficient for other
analyses without modification. For ease of configuration we
use SootConfig1, a fluent interface to configure Soot.

SootKeeper mainly targets Soot as an analysis frame-
work. However, it is possible to use different Java-based
frameworks such as OPAL [5] or WALA2 by implementing
a module in the same manner as our provided Soot module.

The built-in support for OSGi in common Java IDEs, like
Eclipse and Intellij IDEA, makes a convenient debug process
possible. Analysis modules in SootKeeper (and the platform
itself) can be easily started and debugged with IDEs. While

1 https://github.com/stg-tud/sootconfig
2 http://wala.sourceforge.net/wiki/index.php/Main_Page

doing this, an analysis can be modified and updated, without
losing the previous results of unchanged upstream analyses.

3. Evaluation
In order to evaluate SootKeeper, we inspect the effort neces-
sary to convert existing analyses into analysis modules and
the speed-up achieved during an average developer’s day.
This leads us to the following research questions:

RQ1 What is the effort of adapting existing analyses of
various complexity to the requirements of SootKeeper?

RQ2 What is the average speed-up that can be expected by
following SootKeeper’s approach?

Setup and Analysis Adaption We evaluated SootKeeper
on four distinct analyses, which are all based on Soot.
They are: (1) A simple intra-procedural dead code analy-
sis [11], (2) an analysis finding direct usage of native code,
(3) an analysis of intrusive usage of reflection and (4) Flow-
Droid [2]. While the first three are executed against a set of
66 Java common open-source libraries, we executed Flow-
Droid against a set of 21 Android applications. We selected
the analysis targets in order to provide various complexities
and code base sizes for the analyses.

All analyses, except the dead code analysis, existed be-
forehand and needed to be modified to run in SootKeeper.

We implemented the dead code analysis ourselves as a
classical Soot transformer. Due to internal requirements of
Soot, it was necessary to add this transformer to a pack
in Soot before performing the analysis and to remove it
afterwards. This adaption took about an hour of work for
one developer. We added 7 and changed 23 lines of code
from the original analysis.

Both the direct native and the reflection analysis were
part of the same project, which as a whole took less then 30
minutes of work to be modified. All analyses in that project
were already structured to be able to run after Soot, i.e. they
are not added to specific phases, therefore it was very easy

https://github.com/stg-tud/sootconfig
http://wala.sourceforge.net/wiki/index.php/Main_Page
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Figure 3: Excerpts from Experiment Results

to convert them to use SootKeeper. We added 715 lines of
code. No other changes were necessary.

FlowDroid’s conversion was the most complex one, since
this project just uses Soot’s infrastructure and runs the pre-
liminary analyses it needs from Soot itself. Therefore, we
have split FlowDroid into two smaller analyses: (1) A base
analysis which handles the main method generation and
source/sink lookup and (2) the actual taint tracking. Details
of the different steps can be found in the work of Arzt et
al. [2]. Only minor modifications of FlowDroid itself were
necessary, i.e. visibility changes of certain attributes. In total
168 lines where changed in FlowDroid itself, with most of
the changes in extra maven files. Most of the adaption took
place in additional classes implementing or extending Flow-
Droid in addition to those necessary for SootKeeper. This
additional code contains 1274 lines of code including two
maven pom.xml files. One of the authors took approximately
8 hours to convert FlowDroid, since its internal structure is
complex and it was necessary to find an optimal position for
the split. However, included in these 8 hours is a conversion
of the complete FlowDroid project to the maven structure in
order to enable easier builds of OSGi bundles.

In summary for RQ1, we found that the effort needed to
adapt an analysis varies over the complexity of its design. As
being a rather complex analysis, FlowDroid can be seen as
an upper-bound scenario for the adaption to SootKeeper.

To answer RQ2, we performed executions of the afore-
mentioned analysis on various targets. In order to model a
developer’s behavior, we assume that a developer of program
analyses has an average of ten implement-test-debug-cycles
per day. Therefore, we measured the execution times of 10
runs of each analysis for each approach (SootKeeper and the
traditional approach). For the SootKeeper approach we up-
dated the analysis after each run without rebuilding the anal-

ysis, i.e. its caches were cleared, but not the caches of the
analyses it depends on.

All experiments were conducted on a machine running
OS X 10.12 with a 8-core Intel Xeon E5 3.0 GHz processor
and 32 GB memory inside a Docker container [10]. As Java
Runtime Environment, we used the OpenJDK 1.8.0 111 re-
lease, with a heap size set to a maximum of 16 GB.

In order to minimize the hardware requirements, Flow-
Droid was configured using the recommended settings for
speed3.

Results We measured an average speedup of 7.95 for the
Java-targeting analyses and 4.58 for FlowDroid. As an ex-
ample Figure 3a shows the results for the three different
analyses on the rt.jar4. Figure 3b shows the results for the
FlowDroid analysis of the ebay Kleinanzeigen Android ap-
plication.

In contrast to the Java analyses, FlowDroid does not ben-
efit from as large a speedup, since its partitioning is not as
asymmetrical as in the other cases. The taint tracking part,
may easily take more execution time than the earlier parts,
depending on the current settings and the analysis target.
However, we were always able to achieve at least a min-
imal speed-up (of approximately 2 times) and added only
neglectable overhead.

In order to facilitate the reproducibility of these results we
have created docker images. There is a base image5 which
contains a prebuilt version of SootKeeper and the Apache
Felix OSGi distribution6. We additionally supply another

3 https://github.com/secure-software-engineering/

soot-infoflow-android/wiki
4 Oracle JDK8 Update 121
5 https://hub.docker.com/r/patrickmueller/sootkeeper/
6 https://felix.apache.org/

https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://hub.docker.com/r/patrickmueller/sootkeeper/
https://felix.apache.org/


image7, which provides prebuilt versions of the analyses we
ran as part of our experiments. Detailed instructions on the
usage of this image and a list of our analysis targets can be
found in the SootKeeper repository on GitHub8.

4. Related Work
Work related to SootKeeper can be split into work on speed-
ing up analyses by reusing information and work on modu-
larization of program analyses.

The idea of avoiding redundant resource expensive com-
putations in program analyses is not a new one. Visser et al.
propose Green [19], a SAT solver interface for constraints
used by symbolic execution. They check if results have been
already computed and make them persistent across different
runs, analysis targets, analyses and physical locations. Be-
side the performance improvements they refactored an ex-
isting dynamic symbolic execution analysis which also made
use of Soot. Another approach is to store intermediate anal-
ysis results as metadata. As an example Probst [13] stores
constraint graphs of libraries used in callgraph construction.
Ramı́rez-Deantes et al. [14] use results of null, sign or heap
analyses as input. Rountev et al. [16] compute and store IDE
summaries of libraries.

However, storing computed information on the hard drive
may entail multiple problems. Making complex data struc-
tures of the Soot framework persistent would require the
refactoring of a large legacy code base. The data structures
would have to be optimized for serialization regarding file
sizes or input/output-speed. Also, this optimization would
be specific to the data structures used and cannot be ap-
plied generally. With SootKeeper we achieve the same effect
without touching Soot’s source code at all. Furthermore, the
stored data for big codebases (such as the JCL) can be very
large. In many cases, the time taken for I/O will exceed the
time needed to recompute the result and will be detrimental
to the overall performance of the analysis. As SootKeeper
retains the results of analysis modules in memory the same
way as they have been computed there is little to no overhead
over a non-modularized analysis.

SootKeeper is designed to increase the performance when
designing, testing and debugging new analyses by caching
results of required and unchanged analysis modules. A re-
lated scenario is the idea of using previous results to avoid
re-computations of unchanged code, when analyzing a mod-
ified version of a target program. This approach is known
as incremental analyses. Arzt and Bodden [1] present an ap-
proach for incremental analyses using the IDE frameworks.
The work on incremental program analysis is based on Ry-
der [17].

To the best of our knowledge, there is no framework
for the modularization of arbitrary program analysis frame-

7 https://hub.docker.com/r/patrickmueller/

sootkeeper-experiments/
8 https://github.com/stg-tud/sootkeeper

works and analyses. Nevertheless, there exists work on anal-
yses and analysis frameworks that provide modularity to en-
hance extensibility and maintainability. Robby et al. [15] de-
veloped an extensible model checking framework having a
plug-in based module system. The base framework is split
into modules which are used to provide better maintainabil-
ity and extendability. In prior work, we propose a design to
separate IDE/IFDS flow functions [8] and thereby split anal-
yses into different modules.

A different but related approach to our is to split the
target program into modules and run analyses of the modules
in parallel [4, 6, 7]. After the parallel run, the results are
composed to a whole program analysis. This approach aims
at performance gains through parallelization.

5. Conclusion
In this paper, we presented SootKeeper, a framework for
analysis modularity which preserves intermediate results in
an analysis pipeline. Analyses modularized in this fashion
help to facilitate a more efficient development process and
can, furthermore, help in streamlining an evaluation pipeline
for that analyses. We observed that a speedup between a fac-
tor of 2 and 8 can be achieved for a regular development
process and showed that this will increase with every fur-
ther run. Additionally, the manual effort for the adaption of
existing static analysis implementations to the framework re-
mains in reasonable limits. For new implementations the ef-
fort is negligible in comparison to the implementation of the
analysis itself. SootKeeper integrates very well into existing
IDEs and build pipelines due to its adherence to OSGi. De-
velopers can retain their workflow and all IDE features (in-
cluding debugging) while still benefiting from SootKeeper’s
infrastructure and speedup.

We provide the tool, its source code, two Docker contain-
ers, and the documentation at the following website:

http://thewhitespace.de/projects/peaks/

sootkeeper.html

In future work we plan to extend SootKeeper to an inte-
gration platform for static analysis components to provide
support for automated regression testing both in isolation
and integrated with other components. This platform will
also be the foundation for an automated evaluation environ-
ment for static analyses.
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