
Noname manuscript No.
(will be inserted by the editor)

TaintBench: Automatic Real-World Malware
Benchmarking of Android Taint Analyses

Linghui Luo 16
⋅ Felix Pauck 1

⋅ Goran
Piskachev2

⋅ Manuel Benz1 ⋅ Ivan
Pashchenko3

⋅ Martin Mory 1
⋅ Eric

Bodden 12
⋅ Ben Hermann 4

⋅ Fabio
Massacci 35

Received: date / Accepted: date

Abstract Due to the lack of established real-world benchmark suites for static
taint analyses of Android applications, evaluations of these analyses are often
restricted and hard to compare. Even in evaluations that do use real-world
apps, details about the ground truth in those apps are rarely documented,
which makes it difficult to compare and reproduce the results. To push An-
droid taint analysis research forward, this paper thus recommends criteria for
constructing real-world benchmark suites for this specific domain, and presents
TaintBench, the first real-world malware benchmark suite with documented
taint flows. TaintBench benchmark apps include taint flows with complex
structures, and addresses static challenges that are commonly agreed on by the
community. Together with the TaintBench suite, we introduce the Taint-
Bench framework, whose goal is to simplify real-world benchmarking of An-
droid taint analyses. First, a usability test shows that the framework improves
experts’ performance and perceived usability when documenting and inspect-
ing taint flows. Second, experiments using TaintBench reveal new insights
for the taint analysis tools Amandroid and FlowDroid: (i) They are less
effective on real-world malware apps than on synthetic benchmark apps. (ii)
Predefined lists of sources and sinks heavily impact the tools’ accuracy. (iii)

The first two authors contributed equally to this research.

Linghui Luo
E-mail: linghui.luo@upb.de

Felix Pauck
E-mail: fpauck@mail.upb.de

1Department of Computer Science, Paderborn University, Paderborn, Germany
2Fraunhofer IEM, Paderborn, Germany
3Department of Information Sciences and Engineering, University of Trento, Trento, Italy
4Department of Computer Science, Technical University of Dortmund, Dortmund, Germany
5Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
6Corresponding author

2 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Surprisingly, up-to-date versions of both tools are less accurate than their
predecessors.

Keywords Taint Analysis ⋅ benchmark ⋅ real-world benchmark ⋅ Android
Malware

Acknowledgements We would like to thank Christian Brüggeman and Markus Schmidt
for their assistance in the manual inspection and Lisa Nguyen Quang Do for discussions
in the early stage of this project. This research was supported by the research training
group Human Centered Systems Security (NERD.NRW) sponsored by the state of North
Rhine-Westphalia in Germany. It was also partly supported by the European Union H2020
programme under grant agreement 952647 (AssureMOSS) and grant agreement 830929 (Cy-
berSec4Europe).

1 Introduction

Mobile devices store and process sensitive data such as contact lists or banking
information, which require protection against misuse. In case of Android, the
most-used mobile operating system (statcounter, 2019), and its app market-
places such as Google Play Store, it is crucial to protect users’ security and pri-
vacy. Hence, in case of most marketplaces, any app trying to enter is automati-
cally reviewed. Numerous malware detection mechanisms have been developed
to do so (Wei et al., 2014; Arzt et al., 2014; Enck et al., 2014; Gordon et al.,
2015; Grech and Smaragdakis, 2017; Youssef and Shosha, 2017). Nonetheless,
frequent news reporting malware apps bypassing such mechanisms and lurking
into marketplaces show that this process sometimes fails (Soni, 2020; Micro,
2020).

Static taint analysis, in particular, is able to detect security threats, e.g.,
data leaks (as in spyware which is a subset of malware), before they are actually
exploited. It tracks data flows from sensitive sources (e.g., API which reads
the contact list) to sensitive sinks (e.g., API which posts data to the Internet).
Such data flows between sources and sinks are called taint flows. Note, multiple
intentionally, accidentally or maliciously programmed data-flow paths might
result in the same taint flow as the example in Listing 1 shows, hence, a taint
flow is usually counted as detected once a connection consisting of a single or
multiple data-flow paths between the associated source and sink is found.

1 void onCreate(){
2 A a = new A(); B b = new B();
3 a.f = source();//source
4 if (a.f.startsWith(”0”))
5 b.f1 = a.f;//on data−flow path 1
6 else
7 b.f2 = a.f;//on data−flow path 2
8 leak(b);//sink
9 }

Listing 1 Two data-flow paths result in
one taint flow from the source to the sink.

1 void onCreate() {
2 String[] arr = new String[3];
3 arr[0] = ”Hello”;
4 arr[1] = source();//source
5 leak(arr[1]);//expected taint flow
6 leak(arr[0]);//unexpected taint flow
7

8 }

Listing 2 Expected taint flow (true leak
at line 5) vs. unexpected taint flow (no
leak at line 6).

TaintBench 3

Benchmark Suite

Benchmark Case

Benchmark

XOR
Expected Taint Flow

Unexpected Taint Flow

Benchmark App

(the same app might be part of many

benchmark cases)

Results

Result

Benchmark Case

Analysis Result

Detected Data-Flow Path 1

Detected Data-Flow Path n

…

Fig. 1 Left: a benchmark suite consists of a set of benchmark cases. Each benchmark case
is a combination of a benchmark app and a specified expected/unexpected taint flow. Right:
a tool’s analysis result on a benchmark app is a set of data-flow paths connecting sources
and sinks. These data-flow paths are compared to flows specified in the benchmark cases.

To be accurate, taint analyses must evolve along with the Android operat-
ing system without losing accuracy when analyzing apps designed for older sys-
tems. Hence, each year novel tools, or new versions of existing tools that realize
taint analysis implementations become available. To show the relative effective-
ness of each new analysis prototype, its authors are expected to evaluate it em-
pirically. Fortunately, there exist a few well-established benchmark suites for
this purpose, e.g., DroidBench (Arzt et al., 2014), SecuriBench (Livshits
and Lam, 2005) and ICC-Bench (Wei et al., 2014).

The terms used in the context of such benchmark suites as well as their
structure is visualized in Figure 1. The typical usage of these benchmark suites
and the issues coming along with it are described in the following. First, all
the benchmark suites enumerated before are sets of micro benchmark apps —
small programs which are artificially constructed for benchmarking purposes
only.

Multiple expected or unexpected taint flows are defined for and implemented
in each benchmark app. In Listing 2, an expected flow from line 4 to line 5
is defined, as well as an unexpected flow from line 4 to line 6. The expected
flow in this example specifies a true data leak, while the unexpected flow spec-
ifies a false-positive case on which an imprecise tool might still report (e.g.,
a tool overapproximates for arrays and taints the whole array once a tainted
value is written into an array.). Established benchmark suite often uses un-
expected cases to assess the precision of a tool (e.g., BenchmarkTest00009 in
the OWASP Benchmark (OWASP, 2021) and ArrayAccess1.apk in Droid-
Bench (DroidBench 3-0, 2016)). Once an Android taint analysis tool finds
an expected taint flow while benchmarking, it is counted as a true positive
(TP). A missed expected taint flow is counted as a false negative (FN). Con-
sequently, finding and missing unexpected taint flows are counted as false
positives (FP) and true negatives (TN) respectively. We call the combination
of one (un-)expected taint flow and one benchmark app a benchmark case (see
Figure 1).

Evaluations of Android taint analyses frequently use micro benchmark apps
as representatives of real-world apps (Cam et al., 2016; Bohluli and Shahriari,

4 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

2018; Pauck and Zhang, 2019; Zhang et al., 2019; Wei et al., 2014; Arzt et al.,
2014). To evaluate, the analysis result — computed for each benchmark case
— is compared against the associated taint flow which was expected or not
expected to be found. While doing so, TPs, TNs, FPs and FNs are counted.
For example, when the actual analysis result contains an expected taint flow it
is counted as a TP. Based on these countings, the benchmark outcome is then
usually evaluated with respect to accuracy in terms of the metrics precision,
recall, and F-measure. Additionally, the analysis time required per benchmark
case or app is recorded in most evaluations to argue about an implementa-
tion’s efficiency and scalability. This way analysis tools are steadily adapted
to achieve better accuracy scores and run more efficiently for established micro
benchmark suites. Multiple studies indicate that the scores achieved only hold
for micro benchmarks apps and cannot be achieved when analyzing real-world
apps (Qiu et al., 2018; Pauck et al., 2018; Luo et al., 2019a). Thus, many tools
show an over-adaption to micro benchmark suites.

In contrast to evaluations on micro benchmark suites, evaluations on real-
world apps are uncommon and — due to missing or undocumented details —
usually not reproducible. For instance, the authors of DroidSafe (Gordon
et al., 2015) evaluated both DroidSafe and FlowDroid (Arzt et al., 2014)
on 24 real-world Android malware apps. However, information about malicious
taint flows is only documented in form of types of sources and sinks (e.g., source
type is location and sink type is network). Missing details about code locations
related to these flows makes it impossible to reproduce the results, which
hinders the measurement of research progress. Additionally, a documentation
of all expected and unexpected taint flows (ground truth) for a set of real-
world apps rarely exists since the only tools which could be used as oracles
to determine these flows are the tools to be evaluated. Thus, the associated
evaluation results often come unchecked and only comprise an enumeration of
countable findings (e.g., data-flow paths found) without guarantees that the
findings actually represent feasible taint flows (Avdiienko et al., 2015; Arzt
et al., 2014).

The lack of publicly available real-world benchmark suites with a well-
documented ground truth hinders progress in Android taint analysis research.
This paper fills this gap. It first defines a set of sensible construction criteria for
such a benchmark suite. It further proposes the TaintBench benchmark suite
designed to fulfill these construction criteria. The suite comes with a set of real-
world malware apps and precisely hand-labeled expected and unexpected taint
flows, the so-called baseline definition. During a rigorous and long-lasting con-
struction process three field-experts agreed that this baseline definition forms
a valid subset of the ground truth. Along with the suite, this paper introduces
the TaintBench framework, which allows a faster benchmark-suite construc-
tion, a reproducible evaluation of analysis tools on this suite, and easier in-
spection of analysis results. Through a usability test, we were able to confirm
that the framework effectively assists experts in documenting and inspecting
taint flows. Last but not least, we compared TaintBench to DroidBench
and then used both benchmark suites to evaluate current and previously eval-

TaintBench 5

uated versions of Amandroid (Wei et al., 2014) and FlowDroid (Arzt et al.,
2014). While we were able to reproduce results previously obtained on Droid-
Bench, using TaintBench we find that (1) Amandroid and FlowDroid
have shortcomings — especially low recall — on real-world malware apps, (2)
predefined lists of sources and sinks heavily impact the tools’ performance and
there is no perfect list for TaintBench, (3) surprisingly, up-to-date versions
of both tools are less accurate than their predecessors. Particularly they find
fewer actual taint flows. Regarding FlowDroid this seems to happen due to
a bug causing sources and sinks that are actually irrelevant for specific taint
flows to have a shadow effect on FlowDroid’s taint computation.

To summarize, this paper makes the following contributions:

– the first real-world malware benchmark suite with a documented baseline:
TaintBench (39 malware apps with 203 expected and 46 unexpected taint
flows documented in a machine-readable format),

– the TaintBench framework, which allows tool-assisted benchmark suite
construction, evaluation and inspection,

– a usability test for evaluating the efficiency and usability of tools from the
TaintBench framework,

– a comparison of TaintBench and DroidBench, and
– an evaluation of current and previously evaluated versions of FlowDroid

and Amandroid using both DroidBench and TaintBench.

All artifacts contributed with this paper are publicly available:

https://TaintBench.github.io

The rest of the paper is organized as follows. We first discuss related work
in Section 2. We propose the criteria for constructing real-world benchmarks
for Android taint analysis and explain the concrete construction process in
Section 3. We introduce the TaintBench framework which assists real-world
benchmarking of Android taint analyses and show its effectiveness by present-
ing a usability test with experts in Section 4. The constructed TaintBench
suite, its evaluation and results of benchmarking Android taint analysis tools
with both DroidBench and TaintBench are presented in Section 6. Threats
to validity and a conclusion are given in Section 8 and Section 9.

2 Related Work

In the area of Android taint analysis there exist many static (Arzt et al., 2014;
Wei et al., 2014; Gordon et al., 2015; Li et al., 2015; Bosu et al., 2017), dy-
namic (Enck et al., 2014), and hybrid (Benz et al., 2020; Pauck and Wehrheim,
2019) analysis tools as well as a couple of benchmark suites (Arzt et al., 2014;
Wei et al., 2014; Mitra and Ranganath, 2017). We highlight the most promi-
nent static analysis tools and benchmark suites with respect to taint analyses.

FlowDroid (Arzt et al., 2014), Amandroid (Wei et al., 2014), IccTA (Li
et al., 2015) and DroidSafe (Gordon et al., 2015) are the most cited static An-
droid taint analysis tools. Amandroid, FlowDroid and IccTA use config-
urable lists of sources and sinks to be considered during analysis. SuSi (Rasthofer

https://TaintBench.github.io

6 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

et al., 2014) is a machine-learning approach developed to automatically cre-
ate such lists by inspecting the Android APIs. More comprehensive or precise
lists were produced in more recent research (Piskachev et al., 2019). Droid-
Safe’s list of sources and sinks is hard-coded in its source code, which makes
it hard to adapt for real-world apps. While DroidSafe and IccTA are not
maintained anymore, FlowDroid and Amandroid still appear to receive fre-
quent updates (Amandroid*, 2018; FlowDroid*, 2019). Furthermore, all tools
support different features and sensitivities that influence the precision and
soundness. FlowDroid and Amandroid, for example, are context-, flow-,
field-, object-sensitive and lifecycle-aware. Only IccTA and Amandroid sup-
port the analysis of inter-component communication (ICC). None of the tools
is path-sensitive due scalability drawbacks and their static nature. Table 1
shows an overview of the main characteristics of these tools. Evaluations of
the abilities of each tool can be found in previous studies (Qiu et al., 2018;
Pauck et al., 2018).

The most used (cited) and hence most established benchmark suite in this
field of research is DroidBench (Arzt et al., 2014). DroidBench is a col-
lection of artificial apps that forms a micro benchmark suite. Its ground-truth
description can be found in code comments in the source code associated with
each benchmark app. The up-to-date version 3.0 (DroidBench 3-0, 2016) com-
prises 190 apps with benchmark cases in 18 different categories related to
the features and sensitivities exploited. Subsets, variants and extensions of
DroidBench have been used to evaluate certain features or more specialized
taint analysis tools (Wei et al., 2014; Bosu et al., 2017). For example, ICC-
Bench (Wei et al., 2014) comprises benchmark cases to evaluate the abilities of
analyses to handle inter-component communication. A recent suite is Droid-
MacroBench (Benz et al., 2020) — a collection of 12 real-world commercial
Android apps with annotated taint flows reported by FlowDroid. However,
the authors only labeled the taint flows as feasible (i.e., it is possible for data to
flow from a given source to a given sink) or infeasible without characterizing or
giving details about the flows due to the high complexity of commercial apps.
For example, it remains unclear whether the tainted data is sensitive. Thus,

Table 1 Overview of the Main Characteristics of Relevant Static Taint Analysis Tools for
Android Applications

Tool co
n
fi
g
u
ra

b
le

so
u
rc

es
a
n
d

si
n
k
s

a
ct

iv
el

y
m

a
in

ta
in

ed

IC
C

co
n
te

x
t-

se
n
si

ti
v
e

fl
ow

-s
en

si
ti

v
e

fi
el

d
-s

en
si

ti
v
e

o
b

je
ct

-s
en

si
ti

v
e

p
a
th

-s
en

si
ti

v
e

li
fe

cy
cl

e-
aw

a
re

FlowDroid 4 4 8 4 4 4 4 8 4
Amandroid 4 4 4 4 4 4 4 8 4
IccTA 4 8 4 4 4 4 4 8 4
DroidSafe 8 8 8 4* 8 4 4 8 4

*: static method only

TaintBench 7

Table 2 Overview of the Main Characteristics of Relevant Android Benchmark Suites

Benchmark Suite Real-world apps Number of apps Open source Ground Truth
DroidBench 8 190 4 Comments in source code
DroidMacroBench 4 12 8 Jimple code labeled as in-/feasible
Ghera 8 180 4 README file

regarding security aspects, many feasible labeled taint flows might not be real
security threats. Moreover, because DroidMacroBench comprises closed-
source apps, the authors could not legally make the suite publicly available
as open source. Due to these two limitations, it cannot be used as publicly
accessible and comparable proving ground truth for taint analyses.

Ghera (Mitra and Ranganath, 2017) is a repository of micro benchmark
apps sorted into different categories of Android vulnerabilities partially in-
cluding taint flows. As of January 2021, Ghera contains 8 categories with 60
vulnerabilities where each one contains three apps, a benign, a malicious and a
secure one.1 The ground truth is documented in a text file that hold a natural
language description of the vulnerability within the specific app. Table 2 sum-
marizes DroidBench, DroidMacroBench, and Ghera. The Ghera bench-
mark apps were used in a recent study (Ranganath and Mitra, 2020) that
evaluated the effectiveness of existing security analysis tools in detection of
security vulnerabilities. They found out that the evaluated tools could only
detected a small number of vulnerabilities in the Ghera benchmark apps. To
that effect their findings support some findings provided by us during evalua-
tion (see Section 6). However, not all of their benchmark apps are suitable for
benchmarking taint analysis tools. For example, the apps in the Crypto cat-
alog of Ghera contains cryptographic misuses that require typestate analysis
rather than taint analysis. Furthermore, our study answers questions raised in
their study such as whether these taint analysis tools are actually effective in
detecting real-world issues without extra configuration (see Open Questions
3&4 in (Ranganath and Mitra, 2020)).

Pauck et al. (Pauck et al., 2018) proposed ReproDroid to refine, execute,
and evaluate on benchmark suites. Among other suites they refined Droid-
Bench such that each benchmark app now comes with a precisely defined,
machine-readable ground truth in AQL (Android App Analysis Query Lan-
guage) format. We include and extend ReproDroid for enabling automatic
evaluation of analysis tools in our TaintBench framework as described in
Section 4.2.

3 Construction Criteria

This section describes how we constructed a real-world malware benchmark
suite for Android taint analysis. Before doing so and since there exists no
widely accepted real-world benchmark suite for this purpose, we propose the
following three criteria for benchmark suite construction.

1 https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

8 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

I) Ground-Truth Documentation: Mitra et al. proposed the Well Doc-
umented benchmark characteristic — benchmarks should be accompanied by
relevant documentation (Mitra and Ranganath, 2017). In context of our work,
each benchmark app comes with a documentation of the expected and un-
expected taint flows for benchmarking. Such documentation was provided by
DroidBench, however, only in form of code comments that mostly hold nat-
ural language descriptions. It lacks information about the exact code locations
of the taint flows. Pauck et al. (Pauck et al., 2018) pointed out that such doc-
umentation could lead to incorrect evaluation of analysis results. Thus, on top
of the “Well Documented” characteristic, the taint flows of each benchmark
app should be documented in a standard machine-readable format such as
XML or JSON. It should contain both high-level textual information which
describes the purpose of each taint flow (as in DroidBench’s comments) and
exact code locations of the source, the sink, and the intermediate statements
of each flow. Furthermore, since different taint analysis tools may use different
intermediate representations (IRs) the format must support an encoding of
code locations that can be converted into arbitrary IR code locations.

However, to create such a ground truth is difficult in case of real-world apps.
This is particularly true for taint flows that even tools cannot detect. Thus,
our goal here is to create a baseline definition (i.e., a subset of all expected
and unexpected taint flows) for each benchmark app. Regarding expected taint
flows, we focus on those flows which are not only feasible (i.e., it is possible
for data to flow from a given source to a given sink) but also critical under
security aspects, e.g., leaking sensitive information. Our work aims to serve
as a starting point towards a solid real-world benchmark suite for Android
taint analysis. The facilities we put in place should allow (and possibly foster)
extension and improvement of the suite.

II) Representativeness: Nguyen Quang Do et al. recommended representa-
tiveness with respect to the target domain of the evaluated tool or analysis as
an important aspect for benchmark selection (Do et al., 2016). In this paper,
we choose to focus on Android apps identified as malware. There are several
reasons for this decision. First, some available Android malware datasets come
with descriptions of the malicious behaviors, which are unavailable for open-
source datasets (e.g., F-Droid (F-Droid, 2020)) or commercial applications.
Such descriptions accelerate the manual inspection process, for example, when
faced with the manual task of separating true from false findings produced by
automated tools, since the descriptions provide hints of the malicious behavior.
Labels such as malware families or types are insufficient to drive this process.
Second, well-known Android malware datasets have often been used in evalua-
tions in scientific papers (Wong and Lie, 2016; Zheng et al., 2012; Rastogi et al.,
2013; Huang et al., 2014) including Android taint analysis approaches (Huang
et al., 2015; Yang et al., 2016). Last but not least, Android malware is less
likely to cause licensing issues. A benchmark suite must be open-source and
publicly available, and thus cannot legally include commercial apps. Because
of including closed-source, commercial apps in the DroidMacroBench suite,

TaintBench 9

the authors could not make the suite publicly available (Benz et al., 2020).
The meaning of representativeness is twofold in our paper:

– the expected taint flows in the benchmark suite should be representative
of taint flows that address static-analysis challenges. These challenges are
commonly agreed on by the community such as field-sensitivity or the
necessity to model implicit control flows through the application’s lifecycle.
A good example is DroidBench, which groups its benchmark cases into 18
categories based on such challenges, e.g., aliasing, callbacks and reflection.

– the benchmark apps should be representative of the dataset it is sampled
from. Reif et al. provide a tool to generate metrics for Java programs to
assess representativeness during benchmark creation (Reif et al., 2017).
Similarly, we define a set of metrics which are relevant for Android taint
analysis benchmarking in this paper. Details are introduced in Section 6.1.

III) Human-understandable Source Code: Source code availability has
been widely used in previous benchmark works (Blackburn et al., 2006; Prokopec
et al., 2019; Mitra and Ranganath, 2017). Whenever possible, the benchmark
suite should provide human-understandable source code (either directly or by
decompilation) in addition to compiled executables. This criterion is important
for the following three reasons. First, it can help users of the benchmark suite
to understand the documented taint flows. Second, it allows the inspection of
potential false positives produced by automated tools. Lastly, it enables the
community to do source-code level analysis such that the baseline definition
can be checked, improved and extended. Considering our focus on malware,
source code is naturally hard to come by. In the following we will elaborate
how we address this challenge.

3.1 Concrete Construction of the TaintBench suite

For the suite’s construction, we decided to use available Android malware
datasets, since they are very likely to contain malicious taint flows that can
and should be detected by Android taint analysis tools. Note that malicious
taint flows are not equal to taint-style vulnerabilities. Malicious taint flows are
intentionally built into the apps by malware writers, while vulnerabilities are
weaknesses in benign apps that are unintentionally caused by design flaws or
implementation bugs. To obtain suitable malware samples to be included in
TaintBench, we compared well-known Android malware datasets as shown

Table 3 Comparison of Android Malware Datasets

Dataset # App Malware Info Last Update
Contagio (Contagio Mobile, 2012)* 344 Behavior descriptions 2018
AMD (Wei et al., 2017) 24,533 Behavior descriptions 2016**
VirusShare (VirusShare, 2014) 34,265,389 Labels 2019
Drebin (Arp et al., 2014) 5,560 Labels 2012

*: Online source (Contagio Mobile Malware, 2018) (accessed 02/18/2021),
**: Currently unavailable (02/18/2021)

10 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Benchmarks

Benchmarks

Benchmarks

Input

344 Contagio Apps 58 Apps 42 Apps

Excluded Apps

Existence
of behavior

information?

Is the app
obfuscated?

Taint flows
identified?Peer Inspection

Review

39 Benchmark Apps
(with 149 expected taint flows)

Yes

Yes Yes

No

No

No

TAF

Documentation
Lists of Sources and Sinks

Extraction

Inspection

Output

39 Benchmark Apps
249 Benchmark Cases

(with 203 expected and
46 unexpected taint flows)

New Taint Flows
(reported by tools)

100 Additional Benchmark Cases
(54 expected and 46 unexpected taint flows)

TAF

Documentation

Analysis Tools

Fig. 2 Benchmark Suite Construction Process

in Table 3. Considering manual inspection required for identifying the taint
flows, we prefer datasets which have more detailed information such as behav-
ior description, i.e., Contagio (Contagio Mobile, 2012) and AMD (Wei et al.,
2017). From these two, we then chose the Contagio dataset, since it was up-
dated more recently and its size allows us to qualitatively study all samples.

Because original source code is not available for the apps in Contagio, we
opted to decompile the Android malware apps. Modern Android decompila-
tion technology has been improved such that high-level source code files can be
reconstructed successfully in most cases. Decompilation is widely used in re-
verse engineering and validation of software analysis results for closed-source
applications (Luo et al., 2019a; Benz et al., 2020). Another issue was that
some applications in the dataset were obfuscated (e.g., class/method/param-
eter names were renamed to “a”, “bbb” etc.) such that the decompiled code
was very difficult for humans to understand . Considering the difficulty of for-
mulating high-level descriptions for discovered taint flows (as we stated in the
documentation criterion) in obfuscated applications and to ease the future val-
idation of the baseline definition by other researchers, we excluded obfuscated
applications from our selection. Nonetheless we argue that our selection is not
biased, as later shown in Section 6, our selection is a representative subset of
the Contagio dataset.

Figure 2 shows our benchmark suite construction process. The Contagio
dataset contains 344 apps, only 58 of them have references to behavior informa-
tion. From these 58 apps, 42 apps that are not obfuscated became candidates
for taint-flow inspection. Initially, we planned to apply existing Android taint
analysis tools to the apps and manually check the analysis results, but we
quickly gave up on this plan due to the following reasons:

– Too many flows to be checked. The three tools (Amandroid, DroidSafe
and FlowDroid) we initially tried already reported 21,623 flows.

– False negatives remain undetected by tools. We manually inspected a few
malware apps. As our inspection reveals, the tools frequently miss critical
taint flows which are part of the actual malicious intentions of the malware

TaintBench 11

apps (e.g., leaking banking information), i.e., yield false negatives. Often
the sources and sinks that appeared in critical taint flows are not in the
tools’ configuration. These false negatives were described in the behavior
information written by security experts. Thus, they could be identified
manually.

– The tools also frequently report false positives that prolong code inspec-
tion. For the Android malware fakebank android samp, for instance, Flow-
Droid reported 23 taint flows in its default configuration, but only 10 of
them are true positives. Moreover, 8 of these 10 only concern the logging of
sensitive data using the Android Logging Service, something that is consid-
ered secure since Android version 4.1, which protects such logs from being
read without authorization (Rasthofer, 2013). All remaining 13 flows are
false positives.

Consequently, we opted for an alternative approach starting with manual in-
spection. We manually inspected the 42 candidate apps along with their be-
havior information to identify a set of expected taint flows. For example, if an
app’s behavior information like “monitor incoming SMS messages” is included,
our inspection starts at sources which read incoming messages.

The inspection for each app was performed by two people, both with back-
ground in Android taint analysis research, working together as a pair in front
of the same computer. Whenever a taint flow was discovered and confirmed
by both inspectors, it was added to the documentation. After each inspection,
a third inspector (a different person) reviewed the documented taint flows.
Only the taint flows confirmed by all three inspectors were retained in the
final suite. The percentage of agreement between the first two and the third
inspector was 96.82%. This resulted in 39 benchmark apps with 149 expected
taint flows.

Next, we also used an automated tool (see TB-Mapper in Section 4.2.1)
to extract sources and sinks from these 149 expected taint flows and used
them to configure selected Android taint analysis tools — those which we use
during evaluation as well: FlowDroid and Amandroid. We then applied
the taint analysis tools under this configuration to all benchmark apps. This
way 100 taint flows were revealed which have not been documented during
our initial manual inspection. We manually checked and rated these newly
discovered taint flows. Each flow was rated independently by two authors
as expected or unexpected. The results were compared and a consensus was
established. This resulted in further 100 additional benchmark cases — 54
expected and 46 unexpected taint flows. For each expected taint flow, we also
documented the intermediate steps of one data-flow path as witness. At the
end, the TaintBench suite consists of 39 benchmark apps with 203 expected
and 46 unexpected taint flows. We developed a few tools, introduced in the
next section, to support this process. More details about the selected Android
taint analysis tools and their configurations are given in Section 6.

12 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

4 The TaintBench Framework

Along with the TaintBench suite, we contribute the TaintBench frame-
work, which (as our usability test in Section 5 shows) simplifies and speeds
up real-world-app benchmark suite construction (Part Ê – Section 4.1) for
Android taint analysis, allows automatic evaluation (Part Ë – Section 4.2) of
analysis tools, and supports source code inspection (Part Ì – Section 4.3) of
taint flows. Figure 3 gives an overview of this framework, which is structured
into three parts. Every box in the figure refers to a tool extended or built for
this framework. All elements contributed along with this study are marked by
a ☆-symbol.

We describe the framework and all tools it comprises using a running ex-
ample consisting of an artificial app (example.apk) as depicted in Figure 4.
The first class is an Activity component (MainActivity) which comprises one
source (s1) and one sink (s5) in its onCreate lifecycle method. The source
extracts the device’s id (getIMEI) which is considered as sensitive data. Once
it reaches the sink (sendTextMessage), it is leaked via an SMS. The flow from

Repro-
Droid

Part : Construction

Part : Inspection

Part : Evaluation

Config

1 2

3

Source
code

Set of apps

TB-Loader

TB-Extractor

Jadx

Evaluation
Results

TAF

Baseline
Definition

TB-Profiler

Profile

42 candidates 39 benchmark apps

TAF

249 benchmark cases
(203 expected, 46 unexpected)

Visual Studio Code

TB-Viewer

INPUT

Analysis Tools

DeltaApk
-Generator

MinApk
-Generator

TB-Mapper

Fig. 3 Overview of the TaintBench Framework

TaintBench 13

s1 to the logging statement (s7) should not be recognized as a leak, since only
the value of the not-null check is logged. Class Foo contains only one method
(bar) which comprises a second taint flow from s8 (source) to s9 (sink). Details
are omitted to maintain the legibility of the example. In summary, the example
contains two expected taint flows (solid green edges) and one undocumented
taint flow which could mistakenly be identified as a third one (blue dashed
edges):

(s1 → s5), (s8 → s9), (s1 ⇢ s7)

4.1 Part Ê – Construction

In Part Ê, two tools come into play. The first tool, the jadx decompiler (JADX,
2020), allows us to extract source code from Android application package
(APK) files. We extended jadx’s GUI by adding the TB-Extractor. It
enables us to manually specify source, sink, and intermediate assignments of
taint flows by selecting the relevant source code statements directly in the
extended GUI. The extension also allows inspectors to add a high-level de-
scription and attributes (i.e., special language or framework features) to each
taint flow. Once the taint flow specification is done, TB-Extractor outputs
a JSON file which stores the information logged for each taint flow.

The second tool used here is the TB-Profiler. It takes both the APK
and the JSON file generated by TB-Extractor and outputs automatically

LoggerMainActivity

s6

onCreate() {

}

static imei

static checkIMEI() {

}

sendTextMessage
(Logger.imei)

(S ink)

tag = "No leak"

Log.i
(tag, imei != null)

(Sink - still no leak)

s4 Logger.checkIMEI()s4 Logger.checkIMEI()

s1
s = getIMEI()

(Source)
s1

s = getIMEI()

(Source)

Foo

bar() {

}

(Source)

s8

s9

(Sink)

s10 Foo.bar()s10 Foo.bar()

sisi Statement i

Specified

Undocumented
Taint Flow}

Legend

sjsj Instrumented statement j

si Statement i

Specified

Undocumented
Taint Flow}

Legend

sj Instrumented statement j

s = "IMEI: " + s

(Append to String)
s2

s = "IMEI: " + s

(Append to String)
s2

s3
Logger.imei = s

(Static field access)
s3

Logger.imei = s

(Static field access)

s5

s7

Fig. 4 Running Example (example.apk)

14 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

1 { "findings": [{

2 "ID": 1,

3 "isUnexpected": false,

4 "description": "This malicious flow sends IMEI in a SMS."

5 "source": {

6 "statement": "String s = getIMEI();",

7 "methodName": "onCreate",

8 "className": "MainActivity",

9 "lineNo": 1,

10 "targetName": "getIMEI",

11 "targetNo": 1,

12 "IRs": [{"type": "Jimple",

13 "IRstatement": "$r2 = virtualinvoke ..."}]},

14 "sink": {

15 "statement": "sendTextMessage(Logger.imei);", ...},

16 "intermediateFlows": [{

17 "ID": 1, "statement": "s = "IMEI: " + s;", ...},{

18 "ID": 2, "statement": "Logger.imei = s;", ...}],

19 "attributes": {

20 "staticField": true,

21 "appendToString": true},

22 }, { ... }]...}

Listing 3 The TAF-File for the Running Example

detectable attributes which were missed or incorrectly assigned by the inspec-
tors. For example, if there is a statement on a documented taint flow which
involves reflection and the human inspectors forgot to assign the attribute
reflection, the TB-Profiler will detect it automatically by checking the
API signatures and language features involved in the respective statements.2

To avoid false attributes produced by TB-Extractor being documented, the
human inspectors make the final decision if the detected attributes should be
assigned or not. The JSON file derived this way can be stored as the baseline
definition that specifies the taint flows for the associated benchmark app. The
TB-Profiler extracts other static information from the APK, such as the
target platform version, a list of used permissions, sensitive API calls etc., and
stores them in a profile file.

We introduce our documentation of the baseline definition with the running
example. To that effect the baseline definition holds the taint flows illustrated
as solid green edges in Figure 4. To store the baseline definition, a JSON file
conforming our Taint Analysis Benchmark Format (TAF) is generated (out-
put format of TB-Extractor). A shortened version of the TAF-File for the
running example is provided in Listing 3. We did not use the Static Analysis
Results Interchange Format (SARIF) (OASIS, 2019) or similar formats (e.g.
AQL (AQL, 2020)), since most of them are either too general or contain too
many properties (e.g., the rule of a tool used to produce a finding) which are
irrelevant in our domain. We wanted to document the taint flows we manually
specified with the Jadx decompiler. Thus, we did not have the information

2 A list of all attributes considered is given in Table 7 in Section 6.1.

TaintBench 15

of the rule of a specific tool or access path of a taint. Furthermore, SARIF
does not support differentiating expected and unexpected taint flows, which is
important for benchmarking. If we would use the AQL to encode our baseline
information, we could only differentiate expected and not expected taint flows
by attaching a generic key-value pair (attribute). Additionally, encoding inter-
mediate steps in AQL format would make our baseline unnecessarily lengthy
and hence impede human-readability and consequently the manual documen-
tation of taint flows. In contrast, TAF allows to encode all relevant information
in a clearly and precisely structured way. Thereby information given in TAF
can easily be converted into other formats such as the AQL.

Each element of the array findings describes one taint flow. It can be ei-
ther expected or unexpected, indicated by the attribute isUnexpected. When
the value is equal to true, the respective flow is unexpected and it means
there is no data flow between the source and the sink. Otherwise, it is an ex-
pected taint flow. In the listing, the expected taint flow (s1 → s5) is visible.
The second flow (s8 → s9) is hidden in Line 22. An example, that shows how
source, sink, and intermediate flows are described with code locations, is given
in Lines 5-18. If a statement contains multiple function calls, targetName and
targetNo specify which function call precisely is meant. Intermediate flows
are assigned with IDs which indicate the order of their appearances in the
taint flow. The attributes staticField and appendToString indicate that
the tainted data flows through a statically declared variable (s3) and is ap-
pended to a String (s2). The IRs-array holds the intermediate representations
(IR) associated to the statement, such as Jimple (Vallée-Rai et al., 1999; Lam
et al., 2011). Jimple is the IR of the analysis framework Soot on which Flow-
Droid is based, and it is supported by ReproDroid. We included Jimple in
the baseline, but one could certainly fill this array with IRs from other frame-
works. Jimple statements are automatically added by TB-Loader in Part Ë.

4.2 Part Ë – Evaluation

The harness we provide to evaluate Android taint analysis tools on the Taint-
Bench suite is an extension to ReproDroid (Pauck et al., 2018). Repro-
Droid is a configurable open-source benchmark reproduction framework to (i)
refine, (ii) execute, and (iii) evaluate analysis tools on benchmark suites. Con-
sidering the first step (i), ReproDroid allows to create benchmark cases via
a GUI. First, a set of benchmark apps can be imported. Second, sources and
sinks contained in these apps can be selected — manually or automatically by
comparison to a given list of source and sink APIs (e.g., the SuSi (Rasthofer
et al., 2014) list). By specifying sources and sinks, taint flows are implicitly
specified too. Lastly, ReproDroid allows to categorize these implicitly de-
fined taint flows as expected or unexpected. We adapted ReproDroid to ac-
cept our baseline definition as additional input (see TB-Loader in Figure 3).
Thereby, the information of the baseline definition are used to automatically
select sources and sinks and categorize taint flows as expected or unexpected.

16 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Once the benchmark suite is fully setup in ReproDroid it can be stored.
Stored benchmarks can then be loaded to be executed with or without using
ReproDroid’s GUI. Our extension can also be used to export tool-specific
lists of the defined sources and sinks. Currently, the format of Amandroid
and FlowDroid is supported.

For the running example, assume the expected (green arrow) and unex-
pected (red arrow) taint flows in the baseline are:

(s1 → s5), (s8 → s9), (s1 ↛ s9), (s8 ↛ s5) Q

All taint flows are automatically converted into benchmark cases in the AQL
format used in ReproDroid. This format allows one to compose queries
(AQL-Queries), to run arbitrary analysis tools, and also standardizes the tools’
results (AQL-Answers). Hence, in case of taint analysis tools such an AQL-
Answer primarily contains a collection of data flow paths that represent taint
flows.

When executing an analysis tool on a benchmark suite (ii), ReproDroid
creates one AQL-Query per benchmark case. If the same query with respect
to the same benchmark app is asked in two or more cases, the analysis result
is not computed again but loaded and reused. The configuration of Repro-
Droid allows us to specify which set of tools should be used to answer which
type of query. By adapting the configuration or transforming the query ac-
cording to configurable strategies, various queries can be constructed. In our
comprehensive experiments we configured ReproDroid to use four analysis
tools and six different strategies (see Section 6.2). Once a tool is applied to a
benchmark case, one AQL-Answer is computed and stored as result for this
specific case.

To evaluate a tool on a benchmark suite (iii), for each benchmark case
ReproDroid compares the expected and unexpected taint flow (constructed
on the basis of the baseline definition) with the actual AQL-Answer computed
for the respective case. Expected cases allow one to assess the recall of a taint-
analysis tool, while unexpected cases allow one to judge the tool’s precision.
The total number of identified (resp. missed) expected taint flows across all
benchmark cases is used to determine the number of true positives (resp. false
negatives). Flows which match the unexpected taint flows are false positives.
Flows that neither match expected nor unexpected taint flows are not counted.
Due to the construction process of the TaintBench suite (see Section 3.1) this
was never the case considering the experiments conducted in our evaluation
(see Section 6).

To evaluate an analysis tool on our running example, let us assume that
ReproDroid is configured to solely employ one analysis tool. Thus, the fol-
lowing AQL-Query is posed:

Flows IN App(‘example.apk’) ?

Assume the actual AQL-Answer contains four flows:

(s1 → s5), (s8 → s9), (s1 ↛ s9), (s1 ⇢ s7)

TaintBench 17

ReproDroid’s evaluation only considers the first three flows: the first two
are true positives and the third one is a false positive. A flow is evaluated as
true positive (resp. false positive) only if it matches a defined expected case
(resp. unexpected case) (see Q above). The last flow (s1⇢s7) is not specified
as expected or unexpected case — it is not documented, yet. Whenever facing
such an undocumented taint flow, manual inspections is required to decide if
it should be documented as an expected or unexpected case. This way the
100 additional taint flows were added to TaintBench’s baseline definition
(see Section 3.1). To support this inevitable manual inspection, the tool TB-
Viewer was created, which will be introduced later in Section 4.3.

4.2.1 Evaluation-Support Tools

To further support empirical evaluations in the context of the TaintBench
framework, ReproDroid was configured with three additional novel tools.

1) To reduce the complexity of TaintBench apps with respect to each
benchmark case, we introduce the MinApk-Generator. As explained below,
the MinApk-Generator allows one to infer insights about the reason why an
actual taint flow may remain undetected by a tool (false negative). MinApk-
Generator can be used through AQL’s slicer interface although it is no
classic slicer:

Slice IN App(‘example.apk’) !

The MinApk-Generator prunes the original APK and generates a minified
APK for each taint flow defined in the baseline. Considering a taint flow, any
part in the code that is not connected to the source, sink, or intermediate flows
is removed. This task can be performed more efficiently than slicing the app
from source to sink, since the information about intermediate flows is given.
Considering the running example in Figure 4, the checkIMEI() method of
class Logger is removed because it does not appear in the baseline definition.
However, this method would be kept by an ideal forward slicing algorithm
starting from s1, since the static field Logger.imei is used in the method.
MinApk-Generator only keeps the static field of this class. Since lifecycle
methods might be removed this way, a new analysis entry point is created.
To do so, the component that is launched on app start gets selected. Calls to
all methods holding sources are added to one of its lifecycle methods, e.g., a
call to Foo.bar() (s10) is added to the onCreate()-method of MainActivity
in Figure 4. In consequence, it is ensured that the taint flow is reachable in
the call graph of the minified APK.

As such, MinApk-Generator creates a minified version of the app that
still contains the original taint flow. The reduction may be unsound, caus-
ing an analysis to also show false negatives on the minified version. However,
whenever a taint flow — manually labeled as expected taint flow but unde-
tected in the original app — is detected in the minified app, one can consider

18 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

an incomplete call graph to be the reason why the analysis tool misses this
flow in the original app.

2) The DeltaApk-Generator automatically generates variants of an
input app in which a single predefined taint flow, specified in the baseline
definition, is killed. DeltaApk-Generator can be used to check if the eval-
uated analysis tool has over-approximated to detect a taint flow. It is used
as a preprocessor in ReproDroid. The following query asks for flows in our
example app after killing (s1 → s5) with ID=1 (see Line 2 in Listing 3):

Flows IN App(‘example.apk’ | ’DELTA’) WITH ID = 1 ?

DeltaApk-Generator kills the flow from the source getIMEI by instru-
menting overriding assign statement. It inserts a new assign statement s =

null directly after the statement s1. Hence, the tainted variable s is imme-
diately sanitized in the generated delta APK. For a tainted variable which
has primitive type, DeltaApk-Generator inserts a statement that assigns
a constant value to it. This way all flows are killed from the source. A precise
taint analysis tool should report the taint flow (s1 → s5) for example.apk,
but not for its preprocessed version created by DeltaApk-Generator. If
the taint flow is still detected in the delta APK, it is a false positive.

3) TB-Mapper answers AQL-Queries as the following one:

TOTS [SourceAndSinks IN App(‘example.apk’) ?] !

This query asks for an AQL-Answer which lists all the sources and sinks in
the baseline definition of example.apk and converts the detected sources and
sinks into a tool specific format (TOTS), e.g., a file that comprises a list of
sources and sinks used by FlowDroid.

4.3 Part Ì – Inspection

The TB-Viewer, which is the main component of the third part (Ì), comes
in form of a Visual Studio Code (VSC) (Microsoft, 2020) extension using
the MagpieBridge framework (Luo et al., 2019b). It is used whenever manual
inspection is needed. This tool displays specified taint flows directly on the
benchmark app’s source code in VSC. It allows us to interactively inspect and
compare the baseline definition (Part Ê) with the findings of an evaluated
analysis tool (Part Ë).

To do so, TB-Viewer provides four lists in a tree view as shown for the
running example in Figure 5: (A) a list of expected and unexpected taint flows
with data-flow paths that are specified in the baseline definition, (B) a list
of flows which are reported by an analysis tool during evaluation, (C) a list
of matched and (D) a list of unmatched flows. List C contains all those taint
flows of List A that are detected during evaluation. The contrary holds for
List D: it comprises all flows that are reported during evaluation, but do not
match any flow in the baseline. These unmatched flows in list D cannot be
evaluated automatically with ReproDroid by Part Ë, which is why TB-
Viewer supports their manual inspection. TB-Viewer enables the expert

TaintBench 19

Fig. 5 Screenshot of TB-Viewer w.r.t. Running Example

to navigate through an application’s source code along visually highlighted
taint flows defined in these lists, more precisely, to navigate step-wise from
the source to the sink of each taint flow. Considering the running example
and the four flows reported by the configured tool, List A and C would contain
the two expected taint flows depicted by solid green edges in Figure 4 and an
unexpected flow (s1 ↛ s9). List D holds one flow: (s1 ⇢ s7) — dashed blue
edges. Once this latter flow is added to the baseline definition, list D will be
empty.

We have installed TB-Viewer in the Gitpod online IDE (Gitpod, 2019)
for GitHub, thus, all benchmark cases of the TaintBench suite can be viewed
in a web browser.3

3 Find the access at https://taintbench.github.io/taintbenchSuite

https://taintbench.github.io/taintbenchSuite

20 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

5 Evaluation of the TaintBench Framework via a Usability Test

We conducted a controlled experiment with users to evaluate the effectiveness
of the two GUI-based tools in the TaintBench framework, namely jadx with
TB-Extractor and Visual Studio Code (VSC) with TB-Viewer. Thereby
we wanted to answer the following research questions:

RQ1 Do users spend less time to inspect and document taint flows using TB-
Extractor and TB-Viewer than using plain jadx and Visual Studio
Code?

RQ2 Do users perceive TB-Extractor and TB-Viewer to be more usable
than plain jadx and Visual Studio Code?

5.1 Participants

The TaintBench framework is designed for experts and it is hard to find
suitable users. We sent emails to researchers who work in area of program
analysis and developers who have experience in developing static analysis tools.
We were able to recruit five experts to participate in our study. Four of them
are researchers (PhD students). One of them is a software engineer who has
experience in developing static analyzers. All participants are very familiar
with taint analysis. We denote them with User 1–5 in the following.

5.2 Study Design

Due to the low number of participants, we designed a within-subjects study for
each tool, i.e., each participant tests all the conditions. We compare the con-
dition with tool support to without tool support. Table 4 shows the tasks we
designed for the study. While tasks VSC (control condition) and VSC+TB-
Viewer (experimental condition) are used to test TB-Viewer, the tasks
Jadx (control condition) and Jadx+TB-Extractor (experimental condi-
tion) are for testing TB-Extractor. The independent variable in our study
is which tool a participant uses to perform a task we designed. The dependent
variables we measured were the time a participant used to complete a task
and the perceived usability with the System Usability Scale (SUS) (Brooke,
1996). We measured the time, since we wanted to know whether our extensions
TB-Viewer and TB-Extractor help participants to work more efficiently. The
SUS scores reflect how usable the participants think our tools are.

Tasks for testing TB-Viewer: For TB-Viewer, the two tasks are about
the inspection of taint flows. These tasks simulate the manual inspection one
has to do when evaluating a tool’s precision. The participants were asked to
judge whether taint flows reported by a taint analysis tool are false positives or
not. We prepared six taint flows reported by FlowDroid when applying it to

TaintBench 21

Table 4 Descriptions of Tasks

Task Description
VSC (control) The participant was given plain VS Code, decom-

piled source code of an app X and 3 taint flows
in X. The participant was asked to judge whether
these taint flows are true positives or false posi-
tives in VS Code.

VSC+TB-Viewer (experimental) The participant was given VS Code with TB-
Viewer installed, decompiled source code of the
app X and 3 taint flows in X (different 3 than in
task VSC). The participant was asked to judge
whether these taint flows are true positives or
false positives in VS Code.

Jadx (control) The participant was given the Jadx decompiler,
an apk Y from our suite, and two expected
taint flows specified for the apk. The participant
was asked to document these two flows in TAF-
format.

Jadx+TB-Extractor (experimental) The participant was given the Jadx decompiler
extended with TB-Extractor, the apk Y from our
suite, and two expected taint flows (different 2
than in task Jadx) specified for the apk. The par-
ticipant was asked to document these two flows
in TAF-format.

an app from our benchmark suite. To avoid unfair distribution, we intention-
ally chose six true-positive taint flows that we think to be similarly complex.
However, the participants are not aware of this and they have to triage the
taint flows by searching through and looking at relevant code.

In task VSC, the participants were given Visual Studio Code and decom-
piled source code of the app. We asked them to inspect three taint flows that
are documented in an XML file (in AQL-Answer format4). For each flow we
provide information only about the source and the sink but not about the
data-flow paths, as this is also the case when dealing with popular Android
taint analysis tools.5 For each participant, these three taint flows are randomly
chosen from the six taint flows. In task VSC+TB-Viewer, the participants
are asked to inspect the remaining three taint flows. In addition, they used Vi-
sual Studio with the extension TB-Viewer installed. TB-Viewer can read
the taint flows from this XML file and display them directly in Visual Studio
Code as described in Section 4.3.

To minimize the ordering/learning effects, we randomize the order of these
two tasks for the participants. We make sure that the participants do not
always start with task VSC nor VSC+TB-Viewer.

4 https://github.com/FoelliX/AQL-System/wiki/Answers
5 Note that FlowDroid does provide an option to compute and output data-flow paths

in its current version, not, however, in the version used for this study. To construct the
ground truth, we preferred not to use the current version but instead the version from the
ReproDroid paper due to the many false negatives that the current FlowDroid version
creates (see Section 6).

https://github.com/FoelliX/AQL-System/wiki/Answers

22 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Tasks for testing TB-Extractor: For TB-Extractor, the participants
are asked to document taint flows that are determined in an Android app.
Manual inspection and discovering taint flows is a skillful and time-consuming
task. To simplify the study, we give the participants taint flows found by us.
In other words, they do not need to search taint flows by themselves, but
only documenting them. We chose four taint flows from our baseline of an
benchmark app. As described in Section 4.3, in Visual Studio Code (includ-
ing TB-Viewer) each taint flow is displayed with detailed information about
source, sink, its attributes and its intermediate flows as well as a general de-
scription. Note that we ensure the tasks VSC and VSC+TB-Viewer to
be conducted before the tasks for TB-Extractor. Thus, the participants
already know TB-Viewer when conducting the tasks for TB-Extractor.

In task Jadx, the participants are given jadx together with the chosen
app. They are asked to document two randomly chosen taint flows from the
four prepared taint flows with a code editor. They are given a template JSON
file using TAF-format in which they only need to fill in the information (code,
line number etc.) about taint flows copied from jadx. The TAF-format is
explained to the participants before they start the task. In task Jadx+TB-
Extractor, the participants are given jadx with TB-Extractor. We play
a short tutorial video (six minutes) to them. This video explains how to doc-
ument taint flows with the extended jadx. The participants are required to
document the other two taint flows.

Similar to the tasks for testing TB-Viewer, we also randomize the order
of these two tasks for the participants.

5.3 Data Collection

We conducted the experiment with participants remotely via a video confer-
ence tool. Participants were asked to share their screen with us all the time.
After a brief introduction to the study and guide for installation of our tools,
we gave our tasks to the participants in written form and asked them to solve
the tasks independently without our help. In each session, the participants
were given maximally 30 minutes to solve each task. We measured the actual
time each participant spent for each task. We asked the participants to give us
a clear signal when they started and finished each task. After each task, the
participants filled out an exit-survey. In this survey, they were asked to evalu-
ate the ten statements from the System Usability Scale (SUS) and tell about
their feeling when using the system to do the task. SUS is a questionnaire
that is designed to measure the usability of the a system (Brooke, 1996). The
survey and the descriptions of all tasks used can be found on our website.6

6 https://taintbench.github.io/userstudy

https://taintbench.github.io/userstudy

TaintBench 23

System Usability Scale (SUS) Score Comparison

0

50

100

User 1 User 2 User 3 User 4 User 5

100
92.592.5

65

87.5

55

42.5

72.5

40

20

8587.5
92.5

40

80

37.5
30

57.5

35
40

VSC VSC + TB-Viewer Jadx Jadx + TB-Extractor

A (Excellent)

B (Good)
C (OK)

D (Poor)

F (Awful)

80.3

68

51

A (Excellent): (80.3, 100] B (Good): (68, 80.3] C (OK): 68 D (Poor): [51, 68) F (Awful): [0, 51)

Time Comparison

0

15

30

User 1 User 2 User 3 User 4 User 5

910
13

1111

15

28

23

19

23

7

14
17

89
11

17

21

11
14

mins

Fig. 6 Experimental Results

5.4 Results

Figure 6 shows the results of our experiment. The measured time is used to
answer RQ1 and the SUS score for answering RQ2.

RQ1 (Time) All participants solved the tasks more efficiently with the support
of TB-Viewer and TB-Extractor than the ones without. Averagely, the
time used for task VSC+TB-Viewer is reduced from 14.8 to 11 minutes in
comparison to task VSC. With the support of TB-Extractor, the average
time for solving the task is even halved (from 21.6 to 10.8).

RQ2 (Usability) Overall, the participants responded positively to both tools.
Except User 2, all users gave both TB-Viewer and TB-Extractor high
SUS scores ranging from 80 to 100, which means the usability of both tools is
excellent or at least good from their point of view. User 2 explained to us why
he rated VSC+TB-Viewer with low scores. He felt it was very cumbersome
to do the task without the data-flow path of a taint flow displayed in the
editor. However, this information is not given in the results of FlowDroid,
thus, TB-Viewer cannot provide this feature. Actually, if the information

24 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

about the data-flow path is given in the analysis results, TB-Viewer can
actually display this information as done for the taint flows in our baseline
(see Figure 5). While User 2 complained more about the analysis results
missing data-flow path, other users felt well supported by the tool while solving
the task. For example, User 1 told us about his positive feeling about TB-
Viewer:

“Not having to switch back and forth constantly between VS Code and
the XML file took away a lot of possible problem vectors. Like scrolling
too far, misreading a line, misunderstanding what a particular line in
the XML means. Even though the tool didn’t provide a lot more func-
tionality (the ‘jump to’ feature is much appreciated) than the XML-
based solution, I still felt more secure with my results in the end.”

Also User 4 had similar feeling when solving task VSC+TB-Viewer and
wrote:

“Finding the sources and sinks is much easier than without the system.
Still it is not always easy to find the path between source and sink.
Overall, the task is much easier to solve than without the system and
gives higher confidence in giving the correct evaluation.”

In the documentation tasks, without TB-Extractor, all participants felt
doing the task was very tedious and error-prone. They all made some mistakes
(e.g., wrong line number, wrong method signature) in the documentation. In
contrast, the taint flows documented with TB-Extractor were all correct.
The participants felt TB-Extractor was self explanatory and easy to use.
Especially User 5 who had to document taint flows for other work before,
gave a full SUS score (100) to TB-Extractor and spent the least time (9
minutes) for the task. User 3’s comments also show TB-Extractor eases
the task:

Task Jadx: “Absolutely cumbersome to use. A lot of busy work. No
support by the tool at all.”

Task Jadx+TB-Extractor: “Easy to use! However, the description of
the taint flow is in a separate window. But the window is well designed.”

User 3’s comment on task Jadx reflects probably one of the main reasons
for why in previous evaluations of taint analysis tools the ground truth was
rarely documented. In summary, we see that TB-Extractor allows partici-
pants to document taint flows more efficiently and correctly.

6 Evaluation of and with the TaintBench Suite

Our TaintBench suite contains 39 benchmark apps with 249 documented
benchmark cases in total as shown in Table 5. 203 of them are expected taint
flows. 149 expected taint flows were discovered by us manually as described in
Section 3.1. During the evaluation with the benchmark apps, we also inspected

TaintBench 25

taint flows which were reported by both FlowDroid and Amandroid manu-
ally. Thereby additinal 54 expected and 46 unexpected taint flows were added
to the suite. We will introduce more details about this in Section 6.2. Each
benchmark app comes with the following assets in its own GitHub repository:

– the APK file,
– the decompiled source code project,
– the baseline definition (TAF-file),
– a profile file about the benchmark app containing statically extracted in-

formation including target platform version, permissions, sensitive APIs,
behavior description, etc.

Furthermore, we classified the taint flows based on their behaviors accord-
ing to their source and sink categories as shown in the Table 67. We reused
the categories defined in the SuSi paper (Rasthofer et al., 2014) and MUD-
FLOW paper (Avdiienko et al., 2015). We also added new categories such as
INTERNET SOURCE and CRITICAL FUNCTION, since except data leaks our suite
includes other types of malicious taint flows such as Path Traversal (CWE-
22), Execution with Unnecessary Privileges (CWE-250) and Use of Potentially
Dangerous Function (CWE-676).8 The categorization of the sources and sinks
was first done by the lead author. To enhance the reliability, the third author
checked and discussed the assigned categories with the lead author whenever
there were disagreements. Consensus was achieved for the final categorization.

We present our evaluation of the TaintBench suite (RQ3) and with it
(RQ4 and RQ5) by answering the following three research questions:

7 More detailed information of each flow can be found on https://taintbench.github.

io/img/data/Sources_Sinks_Category_Stats.pdf
8 CWEs can be found on https://cwe.mitre.org

Table 5 Summary of the TaintBench Benchmark Suite

No. Name E. U. No. Name E. U.
1 backflash 13 11 21 proxy samp 17 3
2 beita com beita contact 3 0 22 remote control smack 17 0
3 cajino baidu 12 3 23 repane 1 0
4 chat hook 12 1 24 roidsec 6 0
5 chulia 4 0 25 samsapo 4 1
6 death ring materialflow 1 0 26 save me 25 6
7 dsencrypt samp 1 0 27 scipiex 3 0
8 exprespam 2 0 28 slocker1 5 0
9 fakeappstore 3 0 29 sms google 4 0
10 fakebank1 5 0 30 sms send locker qqmagic 6 2
11 fakedaum 2 0 31 smssend packageInstaller 5 0
12 fakemart 2 0 32 smssilience fake vertu 2 2
13 fakeplay 2 0 33 smsstealer kysn assassincreed1 5 0
14 faketaobao 4 0 34 stels flashplayer android update 3 0
15 godwon samp 6 0 35 tetus 2 0
16 hummingbad1 2 0 36 the interview movieshow 1 0
17 jollyserv 1 0 37 threatjapan uracto 2 0
18 overlay1 4 2 38 vibleaker1 4 0
19 overlaylocker21 7 12 39 xbot1 3 0
20 phospy 2 3 Σ 203 46

E.: Number of expected taint flows, U.: Number of unexpected taint flows, 1: Suffix ” android samp”

https://taintbench.github.io/img/data/Sources_Sinks_Category_Stats.pdf
https://taintbench.github.io/img/data/Sources_Sinks_Category_Stats.pdf
https://cwe.mitre.org

26 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Table 6 Overview of Expected and Unexpected Taint Flows according to Source and Sink
Categories. New categories we added are marked with * when appearing for the first time
in the table.

Source Category Sink Category E. U.
ACCOUNT INFORMATION NETWORK 11
ACCOUNT INFORMATION INTENT 1
ACCOUNT INFORMATION FILE 2
ACCOUNT INFORMATION LOG 1
ACCOUNT INFORMATION DATABASE 2
CONTACT INFORMATION NETWORK 11 11
CONTACT INFORMATION INTENT 2
CONTACT INFORMATION SMS MMS 1
CRITICAL FUNCTION * CRITICAL FUNCTION * 2
DATABASE SMS MMS 3
DATABASE FILE 24
DATABASE NETWORK 19
DATABASE DATABASE 2 3
DATABASE LOG 3
DATABASE CRITICAL FUNCTION 1
FILE NETWORK 13 2
FILE FILE 1 1
FILE CRITICAL FUNCTION 5
FILE INTENT 3
FILE LOG 1
INTERNET SOURCE * SMS MMS 2
INTERNET SOURCE OTHER STORAGE * 1
LOCATION INFORMATION FILE 4
LOCATION INFORMATION NETWORK 4 2
NETWORK INFORMATION EMAIL 1
NETWORK INFORMATION LOG 1 1
NETWORK INFORMATION FILE 1
NETWORK INFORMATION NETWORK 9
NETWORK INFORMATION SMS MMS 1
OTHER DATA * NETWORK 1
OTHER DATA LOG 7 1
OTHER DATA CRITICAL FUNCTION 6
OTHER DATA INTENT 2
SMS MMS SMS MMS 5
SMS MMS NETWORK 11
SMS MMS INTENT 6 2
SMS MMS LOG 1
SMS MMS FILE 1
SMS MMS CRITICAL FUNCTION 1
SYSTEM SETTINGS NETWORK 3
SYSTEM SETTINGS CRITICAL FUNCTION 1 1
UNIQUE IDENTIFIER FILE 1
UNIQUE IDENTIFIER NETWORK 25 6
UNIQUE IDENTIFIER LOG 3
UNIQUE IDENTIFIER EMAIL 1
UNIQUE IDENTIFIER CRITICAL FUNCTION 3 6
UNIQUE IDENTIFIER SMS MMS 2
E.: Number of expected taint flows, U.: Number of unexpected taint flows

TaintBench 27

RQ3 How does TaintBench compare to DroidBench and Contagio?
RQ4 How effective are taint analysis tools on TaintBench compared to Droid-

Bench?
RQ5 What insights can we gain by evaluating analysis tools on TaintBench?

6.1 RQ3: How does TaintBench compare to DroidBench and Contagio?

With this question we wanted to evaluate the TaintBench benchmark suite
under two aspects regarding representativeness: First, we evaluated the taint
flows in TaintBench and compared them to those in DroidBench in terms
of language and framework features involved in the flows. Second, using a set
of metrics we compared the benchmark apps in TaintBench to the apps in
DroidBench and the whole Contagio dataset.

6.1.1 Comparison of Taint Flows

As introduced in the representativeness criterion in Section 3, one of our goals
for TaintBench is to include taint flows which address different language
and framework features (attributes). The numbers of expected taint flows
involving different language and framework features are listed in Table 7.

0 1 2 3 4 5 6 7 8
0

20

40

#Attributes in a taint flow

#E
xp

ec
te

d
Ta

in
t fl

ow
s

Fig. 7 Distribution of Attributes

The attributes of each taint flow
are assigned by us and TB-
Profiler as mentioned in Sec-
tion 4.1. Through these attributes
the taint flows can be catego-
rized and also mapped to the
majority (11/18) of the Droid-
Bench’s categories as shown in
Table 7. Categories of Droid-
Bench such as “Android Spe-
cific” (DroidBench 3-0, 2016) are
not uniquely relatable.

Table 7 Attributes Associated to Expected Taint Flows in TaintBench

Attribute Description DB Category # Flows
nonStaticField sensitive values stored in non-static fields Field and Object Sensitivity 61
staticField sensitive values stored in static fields Field and Object Sensitivity 31
reflection refection APIs called Reflection 5
array sensitive values stored in arrays Arrays and Lists 39
collections sensitive values stored in Java collection objects Arrays and Lists 67
threading threading mechanisms involved Threading 80
appendToString sensitive values appended to Strings General Java 99
callbacks callbacks for UI interactions Callbacks 23
lifecycle lifecycle methods involved Lifecycle 104
payload malicious payload is downloaded at runtime Dynamic Loading 5
ICC inter-component communication involved ICC 49
IAC inter-app communication involved IAC 2
implicitFlows∗ implicit flows Implicit Flows 6
pathConstraints+ path conditions must be satisfied – 74
∗Cannot automatically be assigned by TB-Extractor, +No mapping category in DroidBench (DB).

28 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Moreover, most expected taint
flows in TaintBench address multiple (up to 8) features at the same time as
shown in the histogram in Figure 7. This is not modeled in DroidBench. The
majority (175/203) of expected taint flows in TaintBench address multiple
features at the same time rather than a single one as designed in DroidBench.

6.1.2 Comparison of Benchmark Apps

We compare the benchmark apps in TaintBench to apps in DroidBench
as well as to the entire Contagio dataset (from which TaintBench apps are
sampled) in three aspects: (i) the usage of sources and sinks, (ii) call-graph
and (iii) code complexity. For each aspect, we used a set of metrics for a
quantitative evaluation.

Usage of Sources and Sinks The usage of sources and sinks is a predictor of
how many data-flow propagations starting from sources/sinks (depending on
forward/backward analysis) are required to capture all possible taint flows.
Thus, we quantify the usage of sources and sinks with the following metrics:

– #Sources/Sinks: number of different source/sink APIs appeared in a
benchmark app.

– #Usage Sources/Sinks: number of different code locations where source/sink
APIs are used in a benchmark app.

To measure these metrics, we first compiled a list of potential source and sink
APIs. This list consists of three parts: (i) sources and sinks from SuSi (Rasthofer
et al., 2014) GitHub repository; (ii) sources and sinks detected by the machine-
learning approach SWAN (Piskachev et al., 2019) when applying it to Android
platform jars (API level 3 to 29); (iii) sources and sinks documented in both
TaintBench and DroidBench. Based on this list, we computed the values of
above metrics for each app. The summarized results are shown in Table 8. We
report the minimum, the maximum, and the geometric mean9 of each suite and
the Contagio dataset. Clearly, TaintBench employs more usages of sources
and sinks than DroidBench, since all values of TaintBench are at least six
times higher than those of DroidBench. In addition, the geometric means of
TaintBench are in the same order of magnitude as for the entire Contagio
dataset. Especially regarding the number of different sources and sink APIs
appeared in an app, the difference between TaintBench and Contagio is less
than 6. In conclusion, this indicates that a tool must be scalable to handle
more data-flow propagations on TaintBench to achieve equally good results
as on DroidBench.

Call-graph Complexity One of the most important tasks for inter-procedural
analysis is to construct the call graph. We use AndroGuard (Androguard,

9 When there are 0s in the dataset, we computed the geomean of all positive numbers.

TaintBench 29

Table 8 Usage of Sources and Sinks

#Usage #Usage
#Sources Sources #Sink Sinks

DroidBench
min 0 0 1 1
max 8 27 13 22
geomean 2.2 2.4 2.8 3.3

TaintBench
min 4 9 6 13
max 514 4284 369 3486
geomean 49 149 38.4 133.2

Contagio
min 2 2 0 0
max 699 8044 495 7870
geomean 55.1 201.6 43.7 182.0

Table 9 Call-Graph Complexity

CG Max. LC
Size CCL Size

DroidBench
min 11 1 0
max 144 4 0
geomean 27.28 1.4 0

TaintBench
min 112 1 0
max 83981 16 31
geomean 1895.68 4.79 3

Contagio
min 43 0 0
max 139298 44 31
geomean 2599.6 6.3 2.5

Table 10 Analysis Time(s) measured for FlowDroid and Amandroid

FlowDroid Amandroid
TaintBench Contagio TaintBench Contagio

min 2.5 2.3 16.2 0.6
max 361.6 361.6 762 6949.3
geomean 8.5 8.2 71.8 113.8

2011) to generate context-insensitive call graphs. To compare fairly, we ex-
cluded call graph edges from Android platform APIs to the actual application
and edges between Android platform APIs themselves. Based on the resulting
sub call graph, we compute:

– Call Graph Size (CG Size): Number of edges in the call graph.
– Maximal Call Chain Length (Max. CCL): Number of edges in the

longest acyclic call chain (Rountev et al., 2004; Eichberg et al., 2015).
– Longest Cycle Size (LC Size): Number of edges in the longest cycle in

the call graph.

The call-graph comparison is shown in Table 9. The geometric mean indicates,
that call graphs in TaintBench are much larger and more complex than in

30 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

DroidBench. In comparison to the entire Contagio dataset, the call graphs
in TaintBench are smaller. However, as shown in Table 10, the minimum,
maximum and geometric mean of analysis time used by FlowDroid for an
app in TaintBench is almost the same as the time required with respect to
the entire Contagio set.

While the call graphs in DroidBench have no cycles (recursions), since
the values of LC size are all zeros, the call graphs in TaintBench include
even large cycles (LC size up to 31). Recursion is considered as an important
problem that needs to be solved in a context-sensitive analysis. The absence of
it in DroidBench makes it impossible to evaluate the implemented solution
for handling recursions. Max. CCL can be seen as an indicator for the choice of
context string length (call string length) of a context-sensitive analysis. If the
context string length is chosen too small, the analysis can lose precision and
soundness. When the length is too big, the analysis may not scale. To build
a scalable context-sensitive analysis that produces proper results, the context
string length for a best trade-off between precision and scalability may be easy
to find for DroidBench with Max. CCL varying from 1 to 4, however, it is
much more difficult to find the best fit in TaintBench, since the maximum
is up to 16.

Code Complexity We compare TaintBench and DroidBench by comput-
ing the following Chidamber and Kemerer (CK) metrics (Chidamber and Ke-
merer, 1994): Coupling between object classes (CBO), Depth of Inheritance
Tree (DIT), Response for a Class (RFC) and Weighted Method per Class
(WMC). These were often used to evaluate software complexity (Prokopec
et al., 2019; Blackburn et al., 2006). Beside the CK metrics, we also com-
pare number of fields and static fields in the benchmark apps. We used the ck
tool (Mauŕıcio Aniche, 2015) on the source code project of each benchmark
app to calculate the metrics. We also computed other common metrics such as
number of methods and number of classes. The in-depth results are listed on
our website.10 In summary, all measurements show that TaintBench bench-
mark apps are more complex than DroidBench benchmark apps. While this
is not surprising, we find it important to compute these numbers for future
reference.

6.2 RQ4: How effective are taint analysis tools on TaintBench compared to
DroidBench?

Tool and Benchmark Selection: We evaluate two taint analysis tools,
namely Amandroid and FlowDroid. These two tools were chosen because
they lately scored best in two independent studies (Pauck et al., 2018; Qiu
et al., 2018) when evaluated on DroidBench and they are based on distinct
analysis frameworks. Two different versions of both tools are employed: (1) the

10 https://taintbench.github.io/evaluation

https://taintbench.github.io/evaluation

TaintBench 31

respective up-to-date version, and (2) the version used by Pauck et al. (Pauck
et al., 2018) in order to compare our reproduced values to theirs. In the fol-
lowing, we mark the current tool versions by a *-symbol as shown in Table 11.
TaintBench and DroidBench (3.0) are selected as benchmark suites for
all the experiments. Note, because both tools cannot analyze inter-app com-
munication scenarios, the related benchmark cases of DroidBench are not
considered in our setup.

Evaluation Objectives: In the context of TaintBench, we focus on
evaluating analysis accuracy in terms of precision, recall and F-measure but
less on analysis time.

Execution Environment: The TaintBench framework was setup on an
Debian (9 – Stretch) virtual machine with two cores of an Intel©Xeon®CPU
(E5-2695 v3@2.30GHz), 128 GB memory and Java 8 (Oracle 1.8.0 231) in-
stalled. 96 GB memory were reserved for the analysis tools.

Experiments: Table 12 lists all conducted experiments. The first column
ID refers to the benchmark suite and experiment number (e.g., TB2 refers to
Experiment 2 w.r.t. TaintBench). This ID is used throughout the whole sec-
tion. The second column provides a brief description of each experiment. The
last column indicates the comparability of experimental results. Accordingly,
the results of all experiments except TB5 and TB6 are comparable with one
another.

We first conducted all experiments with the 149 expected taint flows iden-
tified by us manually in the benchmark construction phase as described in
Section 3.1. Afterwards, we manually checked and rated newly discovered taint
flows reported by all tools in TB3 and added them as expected and unexpected
taint flows into the baseline and re-run all experiments. In the following, we
report the results using the final baseline of the TaintBench suite presented
in Table 5. The accuracy metrics are computed with the following equations:

Precision = TP

TP + FP
, Recall = TP

P
, F −measure = 2Precision ⋅Recall

Precision +Recall

where TP is the number of true positives, FP the number of false positives
and P the number of expected cases in the benchmark suite.

Table 11 Tools Evaluated

Tool Version
Amandroid (Amandroid, 2017) November 2017 (3.1.2)
Amandroid* (Amandroid*, 2018) December 2018 (3.2.0)
FlowDroid (FlowDroid, 2017) April 2017 (Nightly)
FlowDroid* (FlowDroid*, 2019) January 2019 (2.7.1)

* Up-to-date tool versions.

32 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Table 12 Descriptions of Experiments

ID Description
DB1 Default configuration; evaluated on DB 4
TB1 Default configuration; evaluated on TB 4
DB2 Sources & sinks w.r.t. DB (Suite-Level) 4
TB2 Sources & sinks w.r.t. TB (Suite-Level) 4
TB3 Sources & sinks w.r.t. TB (App-Level) 4
TB4 Sources & sinks w.r.t. TB (Case-Level) 4

TB5 w.r.t. minified apps per TB case 8

TB6 w.r.t. delta apps per TB case 8

DB : DroidBench, TB : TaintBench

6.2.1 Experiment 1 (DB1 & TB1):

The tools are executed in their default configuration. Figure 8 presents pre-
cision, recall and F-measure for DroidBench and TaintBench in column
DB1 and TB1, respectively.

The results obtained for FlowDroid and Amandroid in configuration
DB1 are identical to those in the ReproDroid study (Pauck et al., 2018),
replicating the results obtained there.

The metrics (shown in the bar charts) are calculated based on the table in
Figure 8, which also shows the expected cases and unexpected cases defined
for each benchmark suite. The evaluation is based on these cases only. Al-

163 186

41 35

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

Amandroid 80 12 95 15 2 2 31 19 31 19 31 18 29 4 8 42

Amandroid* 41 10 46 10 5 1 6 7 6 7 6 6 7 1 1 12

FlowDroid 89 12 96 12 26 0 84 10 102 11 101 9 59 8 51 62

FlowDroid* 87 12 95 12 16 1 41 14 43 14 42 13 28 5 23 34

P
re

ci
si

o
n

TP: True Positive, FP: False Positive

TB3 TB4 TB5 TB6DB1 DB2 TB1 TB2

TaintBench

Expected Cases:

Unexpected Cases:

Expected Cases:

Unexpected Cases:

DroidBench

0
0.2
0.4
0.6
0.8
1

DB1 DB2 TB1 TB2 TB3 TB4 TB5 TB6

0
0.2
0.4
0.6
0.8
1

DB1 DB2 TB1 TB2 TB3 TB4 TB5 TB6

0
0.2
0.4
0.6
0.8
1

DB1 DB2 TB1 TB2 TB3 TB4 TB5 TB6

P
re
ci
si
o
n

R
e
ca
ll

F
-m

e
a
su
re

Fig. 8 Experiments 1-6 Result-Overview

TaintBench 33

Table 13 Intersection (∪) and difference (∖) of source and sink sets used by analysis tools
(Amandroid, FlowDroid) and involved in benchmark cases of DroidBench and Taint-
Bench.

A =
B = Amandroid FlowDroid DroidBench TaintBench

Sources Sinks Sources Sinks Sources Sinks Sources Sinks
Intersection (∣A ∩B ∣)
Amandroid 30 42 24 38 4 8 6 4
FlowDroid 24 38 89 133 7 9 12 8
DroidBench 4 8 7 9 15 23 7 4
TaintBench 6 4 12 8 7 4 44 44
Difference (∣A ∖B ∣)
Amandroid 0 0 6 4 26 34 24 38
FlowDroid 65 95 0 0 82 124 77 125
DroidBench 11 15 8 14 0 0 8 19
TaintBench 38 40 32 36 37 40 0 0

though the baseline definition of TaintBench contains 203 expected and 46
unexpected taint flows, ReproDroid can only reflect 186 expected cases and
35 unexpected cases, since it does not distinguish different flows, when the
sources and sinks look exactly the same in Jimple. Jimple statements are not
differentiable (by their textual representation) if they are (1) occuring in the
same method of the same class, (2) use variables with the exact same names as
well as constants with the same contents, (3) and refer to the same source code
line number. As the figure shows, the precision of Amandroid is dramatically
decreased to 50% when evaluated on TaintBench. It only found 4 flows in
our baseline and 2 of them are false positives. The precision of Amandroid*
stays almost unchanged, however, this is calculated only from 6 flows. In con-
trast, the precisions of both FlowDroid and FlowDroid* are high (over
90%). However, on TaintBench all tools show a significantly lower recall
and F-measure than for DroidBench. In the default configuration most taint
flows in TaintBench remain undetected. With 14% (26/186), FlowDroid’s
recall is still the highest.

6.2.2 Experiment 2 (DB2 & TB2):

To understand if the low recall values for TaintBench in Experiment 1 are
mainly caused by the tools’ source and sink configurations, we compared the
different source and sink sets involved. The results of this comparison are
summarized in Table 13. Tool names refer to source and sink sets defined in a
tool’s default configuration. Benchmark suite names refer to the sets occurring
in their benchmark cases. While the upper part of the table row-wise shows
the intersections of these sets in terms of numbers of sources and sinks, the
lower part enumerates sources and sinks contained in one set A but not in
another set B. The two rows labeled with TaintBench show that (i) the
sets of sources and sinks used by tools and DroidBench have only minor
intersections with the set of TaintBench; (ii) TaintBench holds at least 32
different sources and 36 sinks (see column FlowDroid).

34 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

In consequence, we generated a list of sources and sinks for each benchmark
suite based on the comprised taint flows, using TB-Loader (see Section 4.2).
These lists, generated on the suite-level, are configured to be used by the
two tools. As shown in Figure 8, when re-configuring sources and sinks this
way, the results for DroidBench are affected only slightly (DB1 vs. DB2)
but the recall and F-measure values for TaintBench are more than dou-
bled (TB1 vs. TB2). Nonetheless, even under this configuration the tools are
still less effective on TaintBench than on DroidBench. Closest is Flow-
Droid, which achieves a recall of 45% (84/186) for TaintBench while reach-
ing 59% (96/163) for DroidBench. While FlowDroid reports 84 true pos-
itives, Amandroid and Amandroid* detect only 31 and 6 true positives in
TaintBench, respectively.

Surprisingly, on TaintBench the current tool versions (Amandroid* and
FlowDroid*) show a lower recall than their predecessors (Amandroid
and FlowDroid). This argues for the use of TaintBench also for regres-
sion testing.

For FlowDroid and FlowDroid*, the difference is small (1 or 2 flows)
regarding DroidBench. Considering TaintBench, FlowDroid* finds only
half (41/84) of the true positives that can be found by its old version even
under the same source and sink configuration. In addition, FlowDroid* is
less precise, since it reports more false positives than FlowDroid (14 vs. 10).

6.3 RQ5: What insights can we gain by evaluating analysis tools on
TaintBench?

6.3.1 Experiment 3 & 4 (TB3 & TB4):

Since the results of Experiment 2 show that source and sink configurations
affect the recall values heavily, we conduct two more experiments in which
sources and sinks are configured regarding not just each suite but even each
benchmark app (Experiment 3) and each benchmark case (Experiment 4). To
this end, we are now using smaller but more precise sets. We expected that
the results would be the same compared to Experiment 2, and this also holds
for Amandroid(*).

Surprisingly, FlowDroid and FlowDroid* find more taint flows in Ex-
periment 3 and 4. The number of true positives increases from 84 to 102
for FlowDroid and from 41 to 43 for FlowDroid*. This indicates that
the configuration of “superfluous” sources and sinks, which are actually ir-
relevant for a specific benchmark app or case, has some shadow effect on
the taint computation in FlowDroid and FlowDroid*.

TaintBench 35

Furthermore, we made the following observation: One true-positive flow
(A) is detected by FlowDroid* in Experiment 3, but not in Experiment 4.
Instead, in Experiment 4 a different true-positive flow (B) is detected11.

Considering flow (A), we found that FlowDroid* sometimes does not find
a taint flow (source → Child.sink) when Parent.sink was not declared in the
list of sources and sinks, where Child is a subclass of the class Parent. By in-
tuition the reason seems to be that the flow is only detected when Parent.sink
is configured as in Experiment 3. Thus, when Parent.sink is not configured
in the list, the flow to Child.sink remains undetected as in Experiment 4.

Moreover, in case of (B) there are two flows (source1 → sink1) and
(source2 → sink1) with the same sink but FlowDroid* reports only one
of them in Experiment 3. However, the internal analysis of FlowDroid* is
actually capable of finding both flows in Experiment 4, namely, the new true
positive (B) is detected. After a closer investigation, we found out that when
more sources and sinks than the source and sink of the expected taint flow are
configured for FlowDroid* (Experiment 3) one sink overshadows the other.
The order of the relevant sources and sinks appear on two parallel paths in
the inter-procedural control-flow graph (ICFG). These path can be illustrated
as follows:

path1: source1 → sink2 → sink1
path2: source2 → sink1

In Experiment 3, two flows are found: (source1 → sink2), (source2 → sink1).
However, the expected one (source1 → sink1) remains undetected which is
not the case in Experiment 4. Because sink1 appears later than sink2 in path1,
we think that FlowDroid* stops the propagation of taints from source1 when
the taints reach sink2. We reported our findings to the tool maintainers.

6.3.2 Experiment 5 (TB5)

With this experiment we seek to test if the call-graph complexity of real-
world apps in TaintBench is a cause of some unsatisfactory results. To do
so, irrelevant call-graph edges are removed by MinApk-Generator (see Sec-
tion 4.2.1). This leads to fewer timeouts in all cases in Experiment 5 in compar-
ison to Experiment 2 (cf. Table 14; −5 for Amandroid* and −1 for all other
tools). Overall, 27 new true positives are uniquely detected in Experiment 5.
12 of these by Amandroid and 8 by FlowDroid. The newer tools are less
affected with 3 and 4 newly found true positives in case of Amandroid* and
FlowDroid*. The fact that Experiment 5 mostly simplifies the call graph
indicates that the tools likely miss these flows in the original benchmark apps
due to incomplete call graphs.

As a side-effect of the changes made by MinApk-Generator, the tools
were unable to detect some previously detected true positives. Amandroid
also reported one new false positives. For example, when MinApk-Generator

11 A: Flow with ID=1 in overlay android samp. B: Flow with ID=7 in cajino baidu.

36 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

uses an ActionBarActivity class for entry-point creation, this class does not
appear in the dummyMain method generated by FlowDroid(*). Hence, the
results of Experiment 5 look overall worse in Figure 8.

6.3.3 Experiment 6 (TB6)

With this experiment we check if the tools handle data sanitization properly.
We use the DeltaApk-Generator to kill each expected taint flow in the
baseline definition (see Section 4.2.1). If a previously detected true positive
in Experiment 3 is still detected in the respective delta APK (Experiment 6),
this flow is a known false positive (TB3 vs. TB6). If the tools were to fully
handle the killing of flows, also known as “strong updates”, the results of both
experiments should be identical. This is not the case: both precision and recall
decreased (see TB6 in Figure 8). To this effect, and because of the adapted
interpretation, the results should not be compared to the experiments above.

The tools over-approximate the killing of taint flows, i.e., miss the ability
to perform strong updates, which produces a number of false positives on
real-world apps.

6.3.4 Further Important Insights

Timeouts and Unsuccessful Exits: The maximal execution time per app
is set to 20 minutes during all experiments. On DroidBench (DB1, DB2),
neither Amandroid(*) nor FlowDroid(*) reach this timeout. On Taint-
Bench, though, Amandroid* exceeds the timeout on 11 apps. All other
tools rarely do so (see Table 14). However, for one DroidBench and seven
TaintBench apps FlowDroid* claimed to find no analysis entry point, even
though FlowDroid was able to find those — a clear regression. In case of
two other TaintBench apps FlowDroid* failed its analysis, since it was
unable to calculate callbacks. Consequently, on TaintBench FlowDroid*
finds fewer than half of the true positives that can be found by FlowDroid.

It is alerting that both newer tool versions fail to analyze a striking number
of benchmark apps, particularly where earlier analysis versions succeeded.

Table 14 Timeouts, Unsuccessful Exits and Analysis Time in Experiment 2

DroidBench (DB2) TaintBench (TB2)
AD AD* FD FD* AD AD* FD FD*

Timeouts 0 0 0 0 1 11 1 1
Unsuccessful Exits 0 0 0 1 0 0 0 9
Analysis Time (min) 58 61 20 13 98 41 17 5
↪ incl. Timeouts 58 61 20 13 118 261 37 27

AD: Amandroid, FD: FlowDroid

TaintBench 37

Analysis Time: In all scenarios, both versions of FlowDroid are faster
than any version of Amandroid. With respect to DroidBench, Flow-
Droid* is 35%12 faster than its predecessor (see Table 14). Considering Taint-
Bench, FlowDroid*’s speed-up is even larger (71%13). Amandroid* is not
faster than Amandroid on DroidBench but 58%14 faster in case of Taint-
Bench. However, the amount of timeouts thrown by Amandroid* and un-
successful exits of FlowDroid* impede a fair comparison. While new tool
versions appear to be faster, the number of timeouts or unsuccessful exits has
risen.

7 Continuous Benchmarking

From our experiments, we found out that newer tool versions perform worse
than their predecessors when evaluating on TaintBench. To help the tool
authors avoid such regressions in the future, we aim to provide a way in
which Android taint analysis tools can be evaluated on TaintBench on a
continuous basis. We set up GitHub Actions (GitHub, 2020) for both versions
of Amandroid and FlowDroid15. Using the TaintBench framework, we
were able to configure the evaluation of each tool as an automated workflow
of Github Actions. The source and sink configuration of each tool is at app-
level as in Experiment 3 (see Section 6.3.1). The outcome of each workflow
includes a benchmark file computed by ReproDroid containing performance
metrics (precision, recall, F-measure, analysis time) and raw analysis results
of the tool. Each workflow will be triggered on pushes or pull requests to the
TaintBench GitHub repository. This way we can easily obtain performance
improvements and regressions of newer tool releases evaluated on the newest
version of the TaintBench suite in the future. We also provide detailed in-
structions allowing other Android taint analysis tools to be easily adapted for
such continuous benchmarking on TaintBench.

8 Threats to Validity

The external validity of the TaintBench suite itself is threatened by the fact
that we were forced to exclude obfuscated applications. Also, while all taint
specifications have been checked multiple times by at least three authors, there
is the potential threat that the baseline definition nonetheless misses some
actual taint flows (expected cases). Regarding the usability test, one external
threat is embodied by the generalization of the presented results. Given that
the participants were invited by us and voluntary, it is possible that they are
not representative of the general population of experts in taint analysis.

12 35%=(20-13)/20
13 71%=(17-5)/17
14 58%=(98-41)/98
15 More information can be found on https://taintbench.github.io/ci

https://taintbench.github.io/ci

38 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

The internal validity of the usability test is threatened by the fact that
participants were aware of the measurement of time used for each task. This
may have influenced their behavior during the study. The internal validity of
the TaintBench suite is impeded by the time passed since the malware apps
were created. These malware apps do not target the latest Android API level.
Nevertheless, we were able to install and execute almost all of the benchmark
apps16 on a Nexus 4 Android emulator with API level 25. Many apps composed
in the TaintBench suite are not functional anymore, since they have been
communicating with public servers which are not accessible anymore. Most-
likely the servers were actively taken down when the apps were identified
as malware by researchers and field experts. Because of this, only parts of
TaintBench can be used to benchmark dynamic taint analysis tools. This in
turn embodies another reason, why dynamic tools could not be used to verify
our baseline definition.

Note, this paper focuses on the construction and evaluation of our novel
benchmark suite; an in-depth investigation of reasons for our findings in the
tools’ implementations exceeds the scope of this paper. During our experi-
ments we noticed that FlowDroid’s results are non-deterministic (two runs
of FlowDroid(*) with the same inputs produce different results). This is a
known issue first mentioned by Benz et al. (Benz et al., 2020), which has not
yet been fixed. This issue is hardly notable in DroidBench experiments but
well recognizable when analyzing larger apps as in TaintBench.

Regarding our experiments using TaintBench, we are aware of the in-
ternal threat caused by the measurement used in ReproDroid. If there are
two source or sink statements at different positions in the source code (e.g.,
s=source() at line 5 and s=source() at line 10 in a method foo()), which
look identical in Jimple, ReproDroid cannot distinguish them due to missing
exact code locations in the results produced by the taint analysis tools. Thus,
if one of them is detected, ReproDroid regards both flows as detected. In
consequence, the actual recall on TaintBench might be lower than observed.
This issue could be mitigated if the analysis tools were to include unique
statement identifiers e.g., line numbers in their results. We added this func-
tionality to FlowDroid for future releases. The related pull request is already
merged.17

9 Future Work and Conclusion

In future, we will update and maintain the TaintBench suite. We also want
to include more modern apps targeting updated API levels into the Taint-
Bench suite to increase its complexity and hope that the community will join
us. In addition, we plan to reconstruct the malicious taint flows in new apps
targeting higher API levels. These new artificial apps can be used for bench-
marking dynamic approaches. To simplify the use of TaintBench in continu-

16 Except the app cajino baidu
17 https://github.com/secure-software-engineering/FlowDroid/pull/222

https://github.com/secure-software-engineering/FlowDroid/pull/222

TaintBench 39

ous benchmarking and in regressions tests, we will improve the TaintBench
framework such that any benchmark constructed with it can be exported as a
set of JUnit test cases.

Regarding future work on improving Android taint analysis tools, we case
studied some false negatives that were not detected by FlowDroid during
our experiments. Our first result reveals that many call sites of sources and
sinks in those false negatives were not in the call graphs used by FlowDroid.
In future, we plan to work on designing new call graph construction algorithms
that can improve the recall. We are also considering organizing competitions
for Android taint analysis tools with our benchmark suite to encourage further
improvement and development in this area.

To conclude, our novel real-world malware benchmark suite TaintBench,
constructed with respect to the criteria determined for taint analysis bench-
mark suites, reveals insights that could not be gained with the micro bench-
mark DroidBench. The associated experiments revealed surprising facts about
taint analysis tools: (i) Android taint analysis tools have difficulties in detect-
ing real-world taint flows in malware apps, yielding very low recall. (ii) For
Amandroid the situation is particularly bad: the latest version detects almost
no taint flow. (iii) While FlowDroid shows better recall, a configuration us-
ing superfluous sources and sinks that are actually irrelevant for specific taint
flows has a shadow effect on its taint computation, causing it to miss some
actual flows. (iv) For both Amandroid and FlowDroid, new tool releases
are less accurate than their predecessors: as we have shown in Experiments
2, 3 and 4, new releases have lower precision, recall and F-measure. Hence,
we recommend to involve TaintBench in future evaluations of Android taint
analyses and their regression tests.

References

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K (2014) DREBIN:
effective and explainable detection of android malware in your pocket. In:
Proceedings of the 21st NDSS, The Internet Society

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon YL, Octeau
D, McDaniel PD (2014) Flowdroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In: Proceedings
of PLDI, ACM

Avdiienko V, Kuznetsov K, Gorla A, Zeller A, Arzt S, Rasthofer S, Bod-
den E (2015) Mining apps for abnormal usage of sensitive data. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol 1, pp 426–436, DOI 10.1109/ICSE.2015.61

Benz M, Krogh Kristensen E, Luo L, P Borges Jr N, Bodden
E, Zeller A (2020) Heaps’n leaks: How heap snapshots im-
prove android taint analysis. In: Proceedings of the 42nd In-
ternational Conference on Software Engineering, URL https:

https://2020.icse-conferences.org/details/icse-2020-papers/114/Heaps-n-Leaks-How-Heap-Snapshots-Improve-Android-Taint-Analysis

40 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

//2020.icse-conferences.org/details/icse-2020-papers/114/

Heaps-n-Leaks-How-Heap-Snapshots-Improve-Android-Taint-Analysis

Blackburn SM, Garner R, Hoffmann C, Khan AM, McKinley KS, Bentzur R,
Diwan A, Feinberg D, Frampton D, Guyer SZ, Hirzel M, Hosking AL, Jump
M, Lee HB, Moss JEB, Phansalkar A, Stefanovic D, VanDrunen T, von
Dincklage D, Wiedermann B (2006) The dacapo benchmarks: java bench-
marking development and analysis. In: Proceedings of the 21th OOPSLA,
ACM

Bohluli Z, Shahriari HR (2018) Detecting privacy leaks in android apps using
inter-component information flow control analysis. In: Proceedings of the
15th ISCISC, IEEE

Bosu A, Liu F, Yao DD, Wang G (2017) Collusive data leak and more: Large-
scale threat analysis of inter-app communications. In: Proceedings of Asi-
aCCS, ACM

Brooke J (1996) Sus: a “quick and dirty’usability. Usability evaluation in in-
dustry p 189

Cam N, Hau P, Nguyen T (2016) Android Security Analysis Based on Inter-
application Relationships, pp 689–700. DOI 10.1007/978-981-10-0557-2 68

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design.
Transactions on Software Engineering IEEE

Do LNQ, Eichberg M, Bodden E (2016) Toward an automated benchmark
management system. In: Proceedings of the 5th SOAP@PLDI, ACM

Eichberg M, Hermann B, Mezini M, Glanz L (2015) Hidden truths in dead
software paths. In: Proceedings of the 10th ESEC/FSE, ACM

Enck W, Gilbert P, Chun B, Cox LP, Jung J, McDaniel PD, Sheth A (2014)
Taintdroid: an information flow tracking system for real-time privacy mon-
itoring on smartphones. Communications of the ACM

Gordon MI, Kim D, Perkins JH, Gilham L, Nguyen N, Rinard MC (2015) In-
formation flow analysis of android applications in droidsafe. In: Proceedings
of the 22nd NDSS, The Internet Society

Grech N, Smaragdakis Y (2017) P/taint: Unified points-to and taint analysis.
Proc ACM Program Lang 1(OOPSLA), DOI 10.1145/3133926, URL https:

//doi.org/10.1145/3133926

Huang J, Zhang X, Tan L, Wang P, Liang B (2014) Asdroid: detecting stealthy
behaviors in android applications by user interface and program behavior
contradiction. In: Proceedings of the 36th ICSE, ACM

Huang W, Dong Y, Milanova A, Dolby J (2015) Scalable and precise taint
analysis for android. In: Proceedings of ISSTA, ACM

Lam P, Bodden E, Lhoták O, Hendren L (2011) The Soot framework for
Java program analysis: a retrospective. In: Proceedings of CETUS, URL
http://www.bodden.de/pubs/lblh11soot.pdf

Li L, Bartel A, Bissyandé TF, Klein J, Traon YL, Arzt S, Rasthofer S, Bodden
E, Octeau D, McDaniel PD (2015) Iccta: Detecting inter-component privacy
leaks in android apps. In: Proceedings of the 37th ICSE, IEEE Computer
Society

https://2020.icse-conferences.org/details/icse-2020-papers/114/Heaps-n-Leaks-How-Heap-Snapshots-Improve-Android-Taint-Analysis
https://2020.icse-conferences.org/details/icse-2020-papers/114/Heaps-n-Leaks-How-Heap-Snapshots-Improve-Android-Taint-Analysis
https://2020.icse-conferences.org/details/icse-2020-papers/114/Heaps-n-Leaks-How-Heap-Snapshots-Improve-Android-Taint-Analysis
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3133926
http://www.bodden.de/pubs/lblh11soot.pdf

TaintBench 41

Livshits VB, Lam MS (2005) Finding security vulnerabilities in java appli-
cations with static analysis. In: Proceedings of the 14th USENIX Security
Symposium, USENIX Association

Luo L, Bodden E, Späth J (2019a) A qualitative analysis of android taint-
analysis results. In: Proceedings of the 34th ASE, IEEE

Luo L, Dolby J, Bodden E (2019b) Magpiebridge: A general approach to
integrating static analyses into ides and editors (tool insights paper). In:
Proceedings of the 33rd ECOOP, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, LIPIcs, vol 134

Contagio Mobile Malware (2018) URL http://contagiomobile.

deependresearch.org/index.html, Accessed 02/18/2021
Mitra J, Ranganath V (2017) Ghera: A repository of android app vulnerability

benchmarks. In: Proceedings of the 13th PROMISE, ACM
Pauck F, Wehrheim H (2019) Together strong: cooperative android app anal-

ysis. In: Proceedings of ESEC/FSE, ACM
Pauck F, Zhang S (2019) Android app merging for benchmark speed-up and

analysis lift-up. In: Proceedings of the 2nd A-Mobile@ASE, IEEE
Pauck F, Bodden E, Wehrheim H (2018) Do android taint analysis tools keep

their promises? In: Proceedings of ESEC/FSE, ACM
Piskachev G, Do LNQ, Bodden E (2019) Codebase-adaptive detection of

security-relevant methods. In: Proceedings of the 28th ISSTA, ACM
Prokopec A, Rosà A, Leopoldseder D, Duboscq G, Tuma P, Studener M,

Bulej L, Zheng Y, Villazón A, Simon D, Würthinger T, Binder W (2019)
Renaissance: benchmarking suite for parallel applications on the JVM. In:
Proceedings of the 40th PLDI, ACM

Qiu L, Wang Y, Rubin J (2018) Analyzing the analyzers: Flowdroid/iccta,
amandroid, and droidsafe. In: Proceedings of the 27th ISSTA, ACM

Ranganath V, Mitra J (2020) Are free android app security analysis tools
effective in detecting known vulnerabilities? Empirical Software Engineering
25(1):178–219, DOI 10.1007/s10664-019-09749-y, URL https://doi.org/

10.1007/s10664-019-09749-y

Rasthofer S, Arzt S, Bodden E (2014) A machine-learning approach for clas-
sifying and categorizing android sources and sinks. In: Proceedings of the
21st NDSS, The Internet Society

Rastogi V, Chen Y, Jiang X (2013) Droidchameleon: evaluating android anti-
malware against transformation attacks. In: 8th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIA CCS ’13, Hangzhou,
China - May 08 - 10, 2013, ACM

Reif M, Eichberg M, Hermann B, Mezini M (2017) Hermes: assessment and
creation of effective test corpora. In: Proceedings of the 6th SOAP@PLDI,
ACM

Rountev A, Kagan S, Gibas M (2004) Static and dynamic analysis of call
chains in java. In: Proceedings of ISSTA, ACM

Vallée-Rai R, Co P, Gagnon E, Hendren LJ, Lam P, Sundaresan V (1999) Soot
- a java bytecode optimization framework. In: Proceedings of CASCON, IBM

http://contagiomobile.deependresearch.org/index.html
http://contagiomobile.deependresearch.org/index.html
https://doi.org/10.1007/s10664-019-09749-y
https://doi.org/10.1007/s10664-019-09749-y

42 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Wei F, Roy S, Ou X, Robby (2014) Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps.
In: Proceedings of CCS, ACM

Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deep ground truth analysis of
current android malware. In: Proceedings of the 14th DIMVA, Springer,
Lecture Notes in Computer Science, vol 10327

Wong MY, Lie D (2016) Intellidroid: A targeted input generator for the dy-
namic analysis of android malware. In: Proceedings of the 23rd NDSS, The
Internet Society

Yang T, Qian K, Li L, Lo DC, Tao L (2016) Static mining and dynamic taint
for mobile security threats analysis. In: Proceedings of SmartCloud, IEEE
Computer Society

Youssef A, Shosha AF (2017) Quantitave dynamic taint analysis of privacy
leakage in android arabic apps. In: Proceedings of the 12th International
Conference on Availability, Reliability and Security, Association for Com-
puting Machinery, New York, NY, USA, ARES ’17, DOI 10.1145/3098954.
3105827, URL https://doi.org/10.1145/3098954.3105827

Zhang J, Tian C, Duan Z (2019) Fastdroid: efficient taint analysis for android
applications. In: Proceedings of the 41st ICSE, IEEE / ACM

Zheng C, Zhu S, Dai S, Gu G, Gong X, Han X, Zou W (2012) Smartdroid:
an automatic system for revealing ui-based trigger conditions in android
applications. In: Proceedings of SPSM@CCS, ACM

Amandroid (2017) URL https://bintray.com/arguslab/maven/

argus-saf/3.1.2, Accessed 02/16/2020
Amandroid* (2018) URL https://bintray.com/arguslab/maven/

argus-saf/3.2.0, Accessed 02/16/2020
Androguard (2011) URL https://github.com/androguard/androguard,

Accessed 02/16/2020
AQL (2020) Android app analysis query language (aql). URL https://

foellix.github.io/AQL-System, Accessed 02/16/2020
Contagio Mobile (2012) URL http://contagiominidump.blogspot.com, Ac-

cessed 02/16/2020
DroidBench 3-0 (2016) URL https://github.com/

secure-software-engineering/DroidBench/tree/develop, Accessed
02/16/2020

F-Droid (2020) F-droid. URL https://F-Droid.org, Accessed 02/16/2020
FlowDroid (2017) URL https://github.com/

secure-software-engineering/soot-infoflow-android/wiki, Ac-
cessed 02/16/2020

FlowDroid* (2019) URL https://github.com/

secure-software-engineering/FlowDroid/releases/tag/v2.7.1,
Accessed 02/16/2020

GitHub (2020) Github actions. URL https://docs.github.com/en/

actions, Accessed 07/05/2020
Gitpod (2019) Online ide for github. URL https://www.gitpod.io, Accessed

02/16/2020

https://doi.org/10.1145/3098954.3105827
https://bintray.com/arguslab/maven/argus-saf/3.1.2
https://bintray.com/arguslab/maven/argus-saf/3.1.2
https://bintray.com/arguslab/maven/argus-saf/3.2.0
https://bintray.com/arguslab/maven/argus-saf/3.2.0
https://github.com/androguard/androguard
https://foellix.github.io/AQL-System
https://foellix.github.io/AQL-System
http://contagiominidump.blogspot.com
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://F-Droid.org
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.7.1
https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.7.1
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://www.gitpod.io

TaintBench 43

JADX (2020) Dex to Java decompiler. URL https://github.com/skylot/

jadx, Accessed 02/16/2020
Mauŕıcio Aniche (2015) Java code metrics calculator (CK). URL https://

github.com/mauricioaniche/ck, Accessed 02/16/2020
Micro T (2020) New tekya ad fraud found on google play. URL
https://blog.trendmicro.com/trendlabs-security-intelligence/

new-tekya-ad-fraud-found-on-google-play/, Accessed 29.06.2020
Microsoft (2020) VSC - Visual Studio Code. URL https://code.

visualstudio.com, Accessed 02/16/2020
OASIS (2019) Static analysis results interchange format (sarif) version

2.0. URL https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/

sarif-v2.0-csprd02.html, Accessed 02/16/2020
OWASP (2021) Owasp benchmark. URL https://owasp.org/

www-project-benchmark/, Accessed 07.05.2021
Rasthofer S (2013) The android logging service – a dangerous feature for

user privacy? URL https://blogs.uni-paderborn.de/sse/2013/05/17/

privacy-threatened-by-logging, Accessed 02/16/2020
Soni J (2020) This dangerous malware got around google

play store security. URL https://www.techradar.com/news/

phantomlance-malware-breaches-google-play-store-security,
Accessed 29.06.2020

statcounter (2019) Operating system market share worldwide jan -
dec 2019. URL https://gs.statcounter.com/os-market-share#

monthly-201901-201912-bar, Accessed 02/16/2020
VirusShare (2014) URL https://virusshare.com, Accessed 02/16/2020

https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://github.com/mauricioaniche/ck
https://github.com/mauricioaniche/ck
https://blog.trendmicro.com/trendlabs-security-intelligence/new-tekya-ad-fraud-found-on-google-play/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-tekya-ad-fraud-found-on-google-play/
https://code.visualstudio.com
https://code.visualstudio.com
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-csprd02.html
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-csprd02.html
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://blogs.uni-paderborn.de/sse/2013/05/17/privacy-threatened-by-logging
https://blogs.uni-paderborn.de/sse/2013/05/17/privacy-threatened-by-logging
https://www.techradar.com/news/phantomlance-malware-breaches-google-play-store-security
https://www.techradar.com/news/phantomlance-malware-breaches-google-play-store-security
https://gs.statcounter.com/os-market-share#monthly-201901-201912-bar
https://gs.statcounter.com/os-market-share#monthly-201901-201912-bar
https://virusshare.com

44 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Short Biography

Linghui Luo is a PhD candidate and a research associate in the Secure
Software Engineering Group at the Heinz Nixdorf Institute of Paderborn Uni-
versity, Germany. She received the silver medal in the ACM Student Research
Competition at the ESEC/FSE conference 2021. Her research interests include
program analysis (mainly taint analysis for Java and Android applications),
empirical software engineering and usability of program analysis tools. She is
the creator of the MagpieBridge framework for IDE integration and a contrib-
utor to the static analysis framework Soot.

Felix Pauck received his M.Sc. degree in Computer Science from Pader-
born University (2017), since then he works as a doctoral candidate at the
Paderborn University. He started his work on the cooperative analysis of An-
droid apps by finishing his masters’ thesis. Currently his main research inter-
ests are software analysis and benchmarks.

TaintBench 45

Goran Piskachev is a research associate at Fraunhofer IEM in Paderborn
and a PhD student at Paderborn University. He received his master degree
in computer science from Paderborn University. Previously, he completed an
engineering degree at the Ss. Cyril and Methodius University in Skopje. His
research interests include static code analysis, security testing, domain specific
languages, and machine learning for code analysis.

Manuel Benz earned his master’s degrees in Computer Science and IT
Security in 2016 from Technische Universität Darmstadt. During that time he
also worked with Prof. Bodden on detecting misusages of cryptographic APIs
at Fraunhofer SIT. After his master’s, Manuel joined Prof. Bodden’s work-
ing group Secure Software Engineering at Paderborn University as a Ph.D.
student. His research was focused on combining static and dynamic program
analysis techniques to mitigate the shortcomings of either approach. Based
on their research, he and his colleagues Andreas Dann and Johannes Späth
founded the cloud-native-security-focused start-up CodeShield in 2019. As a
co-founder and CTO of CodeShield, Manuel carries further his research to help
develops build secure cloud-native applications.

46 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Ivan Pashchenko (PhD 2019) is a Research Assistant Professor at the
University of Trento. He holds the silver medal for the ACM/Microsoft student
Research competition in the graduate category in 2017. His research interests
include open-source software security, software verification, and machine learn-
ing for security. Contact him at ivan.pashchenko@unitn.it.

Martin Mory (M.Sc. 2016) works in the research group Secure Software
Engineering at the Heinz Nixdorf Institute of Paderborn University, Germany.
His main focus of research is static data-flow analysis for C/C++ software,
particularly pointer analysis.

TaintBench 47

Eric Bodden is a full professor for Secure Software Engineering at the
Heinz Nixdorf Institute of Paderborn University, Germany. He is further the
director for Software Engineering and IT Security at the Fraunhofer Institute
for Engineering Mechatronic Systems Design. Prof. Bodden has been recog-
nized several times for his research on program analysis and software security,
most notably with the German IT-Security Price and the Heinz Maier-Leibnitz
Price of the German Research Foundation, as well as with several distinguished
paper and distinguished reviewer awards. He is an ACM Distinguished Mem-
ber.

Ben Hermann is an assistant professor at the Technical University of
Dortmund. He works on evolutionary software security and has been the author
of several works in the field of static program analysis. Prof. Hermann worked
on several static analysis frameworks including PhASAR, Soot, and OPAL and
has significant experience in engineering these frameworks and the analyses
build on top of them. He received his doctorate degree from the University of
Darmstadt for his work on Java security.

48 Luo, Pauck, Piskachev, Benz, Pashchenko, Mory, Bodden, Hermann, Massacci

Fabio Massacci (PhD 1997) is a professor at the University of Trento,
Italy, and Vrije Universiteit Amsterdam, The Netherlands. He received the Ten
Years Most Influential Paper award by the IEEE Requirements Engineering
Conference in 2015. He coordinates the education activities of the European
Competence Center Pilot CyberSec4Europe and is the European coordinator
of the AssureMOSS project. Contact him at fabio.massacci@ieee.org.

	Introduction
	Related Work
	Construction Criteria
	The TaintBench Framework
	Evaluation of the TaintBench Framework via a Usability Test
	Evaluation of and with the TaintBench Suite
	Continuous Benchmarking
	Threats to Validity
	Future Work and Conclusion

