
TACAI: An Intermediate Representation Based on
Abstract Interpretation

Michael Reif, Florian Kübler, Dominik Helm,
Michael Eichberg, Mira Mezini
Technical University of Darmstadt

Germany
<reif,kuebler,helm,mezini>@cs.tu-darmstadt.de

Ben Hermann
Universität Paderborn

Germany
ben.hermann@upb.de

Abstract
Most Java static analysis frameworks provide an intermedi-
ate presentation (IR) of Java Bytecode to facilitate the devel-
opment of static analyses. While such IRs are often based
on three-address code, the transformation itself is a great
opportunity to apply optimizations to the transformed code,
such as constant propagation.
In this paper, we propose TACAI, a re�nable IR that is

based on abstract interpretation results of a method’s byte-
code. Exchanging the underlying abstract interpretation do-
mains enables the creation of various IRs of di�erent pre-
cision levels. Our evaluation shows that TACAI can be e�-
ciently computed and provides slightly more precise receiver-
type information than Soot’s Shimple representation. Fur-
thermore, we show how exchanging the underlying abstract
domains directly impacts the generated IR.

Keywords: three-address code, static single assignment, static
analysis, Java bytecode

1 Introduction
To ease the implementation of static analyses, common static
analysis frameworks for Java bytecode transform the stack-
based bytecode into a three-address-code-based intermediate
representation (TAC). As TAC representations have a much
smaller instruction set than the original bytecode, they can
ease the development of static analyses. Using such a trans-
formation does not only remove the bytecode’s operand
stack—which complicates static analysis—but also enables
the immediate application of optimizations [5, 14], e.g., con-
stant propagation or dead path removal. As Bodden [1] ob-
served, e�cient static analyses with higher precision also
yield better performance in subsequent analyses, emphasiz-
ing the need for optimizations. However, the optimizations’
e�ect on subsequent analyses is still not well understood;
in particular for optimizations related to the base represen-
tation on which subsequent analyses are built. This work
explores the impact of the employed base representation on
the call graphs built on top of di�erent optimizations.

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

Despite that all major analysis frameworks use a typed
base representation, they o�er di�erent precision. Most of
Soot’s [13] analyses use Jimple [14], an optimized TAC rep-
resentation applying di�erent optimizations during its gen-
eration (e.g. constant propagation), DOOP [11] uses Soot’s
Shimple1 which is Jimple transformed to static single as-
signment (SSA) form, and WALA’s [9] IR2 is in an extended
SSA [3] form which additionally captures local path con-
ditions in π nodes [2]. In this paper we extend OPAL [7],
formerly operating on bytecode directly, by a SSA-like rep-
resentation without ϕ statements. However, compared to
the other representations, ours optionally provides advanced
type information about reference types using union and in-
tersection types.
Initial observations reveal that especially Jimple, WALA

IR, and TACAI apply di�erent optimizations during the trans-
formation such that the available type information varies in
precision.

1 Collection c;
2 if(cond){ c = new ArrayList(); } else { c = new Vector(); }
3 c.add(null); // Call site

Listing 1. Precision Example

With the help of Listing 1, the di�erences between Jimple,
WALA IR, and TACAI can be explained. Considering the
call site at line 3, all three IRs provide type information
with di�erent precision. Whereas WALA IR only provides
c’s declared type Collection, Jimple encodes the upper-
type bound List, i.e., the common supertype of ArrayList
and Vector. TACAI provides a union type of ArrayList
and Vector—the most precise type information if cond is
unknown. Hence, even a simple class hierarchy analysis call
graph [4] already di�ers when these di�erent IRs are used.
This paper reports on the design and implementation of

TACAI, an abstract-interpretation-based intermediate rep-
resentation with exchangeable abstract domains. We imple-
mented TACAI as an extension of OPAL. Being able to adapt
a domain provides the advantage that the precision of the
information encoded by the TAC can easily be changed, e.g.,
1h�ps://github.com/Sable/soot/wiki/A-brief-overview-of-Shimple, 03-04-
2019.
2h�ps://github.com/wala/WALA/wiki/Intermediate-Representation-(IR),
03-04-2019.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/Sable/soot/wiki/A-brief-overview-of-Shimple
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)

Conference’17, July 2017, Washington, DC, USA M. Reif et al.

to provide more precise information regarding the concrete
type of receiver objects, integer values, and strings. We will
discuss and evaluate how switching the used abstract do-
mains a�ects the bytecode-to-TACAI transformation. Fur-
thermore, we compare TACAI to Shimple, a well-established
intermediate representation provided by Soot.

2 Approach
TACAI, our approach for a three-address code (TAC) rep-
resentation, is based on the results of an intra-procedural
abstract interpretation (AI) of a method’s bytecode. This
features two main properties: First, it enables intermediate-
representation (IR) derivation at di�erent precision levels by
exchanging the underlying domains. Second, all information
is computed at the same time in one step which o�ers im-
proved performance when compared to classical compiler
frameworks which typically compute comparable informa-
tion in a step-wise manner [10]. In this step-wise approach
collected information is oftentimes not shared between steps
and, therefore, recomputed to reduce dependencies. While
performing the AI, OPAL always computes the method’s
control-�ow graph (CFG) and def-use/use-def information
on-the-�y. Therefore, the CFG and def-use information im-
mediately bene�t from better domains and lead to simpler
and less IR code. The CFG and def-use information are also
made explicit in TACAI.
We reuse OPAL’s domains starting with those operating

at the type level and which will lead to an IR that has similar
precision as Soot’s Shimple representation. However, OPAL
also provides domains that enable constant propagation and
constant folding for primitive types. For reference values,
domains are available which, for instance, precisely track
the nullness, provide must-alias information, compute in-
tersection and union types, or resolve local Class.forName
calls. Using these domains enables the computation of an
more precise IR when compared to typical IRs o�ered by the
other frameworks. Furthermore, it is possible to tailor the
precision at a very �ne-grained level to a client’s needs.
OPAL uses Scala’s mixin-composition to con�gure the

AI and to implement the semantics for the di�erent sets
of instructions. The default, namely TACAIL0, performs all
operations at the type level and is shown in Listing 2.

The semantics for each set of closely related instructions
is implemented by one specialized trait. OPAL provides one
trait for integer, long, float, and double based compu-
tations, one for method invocations, one for �eld accesses,
and one for reference-value-based operations. The latter han-
dles, e.g., instanceof checks, casts, and tests against null.
Interactions between the traits are facilitated by requiring
the implementation of a shared set of query methods. For
example, every implementation that handles reference val-
ues has to implement the globally de�ned method to test
if a value is null. The result of these methods is typically

1 trait TypeLevelDomain extends Domain
2 with DefaultReferenceValuesBinding
3 with DefaultTypeLevelIntegerValues
4 with DefaultTypeLevelLongValues
5 with TypeLevelLongValuesShiftOperators
6 with TypeLevelPrimitiveValuesConversions
7 with DefaultTypeLevelFloatValues
8 with DefaultTypeLevelDoubleValues
9 with TypeLevelFieldAccessInstructions
10 with TypeLevelInvokeInstructions

Listing 2. Example TypeLevelDomain Con�guration

a three-state answer: Yes, No, or Unknown. For example,
the method returning a reference value’s nullness is used by
the domain which is responsible for handling method calls.
The latter checks—for each method invocation—if the re-
ceiver is null. If the receiver is known to be null the target
method is not invoked, but a NullPointerException will
be thrown instead. If the answer is Unknown the behavior can
further be con�gured such that only the call is considered
or additionally an exception is considered to be thrown.
Besides the TACAIL0 con�guration, two further con�g-

urations for a more precise TAC are precon�gured. In the
�rst one (TACAIL1), the DefaultReferenceValuesBinding
(Line 2) is exchanged for an implementation that computes
intersection and union types as well as must-alias informa-
tion for reference values. Furthermore, special support for
calls of the native method System.arraycopy is provided
which checks for the non-nullness of the arrays and also
validates the range that is to-be-copied. If this validation
fails, appropriate exceptions are thrown which have to be
correctly represented.3 Lastly, constant folding and propa-
gation is performed for integer values by exchanging the
DefaultTypeLevelIntegerValues (Line 3) domain. The lat-
ter is required to identify if statements where the conditions
evaluate to constant values and are therefore useless.
The most precise con�guration (TACAIL2) builds on top

of TACAIL1 and additionally performs method inlining for
monomorphic calls. This is, e.g., useful for builders (e.g.
StringBuilder/StringBu�er) which provide a �uent interface,
enabling call chaining by always returning the current in-
stance. In such cases, it is then possible to determine that
all calls actually happen on the same instance. For that,
Scala’s stackable trait pattern is used to adapt the handling
of method invocations, i.e., an additional trait is con�gured.
Table 1 shows the respective TACAI output for method

m (cf. Listing 3) at all three levels. TACAIL0 almost directly
re�ects the bytecode: The type of the variable p1 (Line 2)
is considered to be Cloneable after the cast operation. The
code also contains the (useless) reference comparison (Line
3Special handling is provided for System.arraycopy because it is by far
the most widely used native method in the JDK.

2

TACAI: An Abstract-interpretation-based IR Conference’17, July 2017, Washington, DC, USA

7), comparing the newly created StringBuffer (Line 4) with
the reference returned by the append call (Line 6). TACAIL1
is able to correctly identify that p1’s type is Serializable
with Cloneable. This intersection type signi�cantly re-
stricts the set of subtypes when compared to the previous
version. Additionally, both p1 and lv4 are found not to be
null: p1 because of the explicit nullness check (Line 0), the
second because it is freshly allocated (Line 4). This guaran-
tees that the invocations on p1 (Line 3) and lv4 (Lines 6
and 10) will not cause NullPointerExceptions. Although
the chosen domain is able to track must-alias information
intra-procedurally, the (useless) reference comparison is still
found in the TAC. The identi�cation of the must-alias rela-
tion in this case requires to know that the value returned by
append is the self-reference this. By performing inlining,
as done when computing the TACAIL2, this information be-
comes available and, therefore, the useless comparison can
be removed and subsequently, the if statement is removed
as well as the throw statement. A NOP statement (TACAIL2
Line 7) is added because the CFG is not rewritten during the
initial transformation, which requires that every basic block
contains at least one instruction. It is straight-forward to
remove NOPs and update the CFG in a second step.

1 RuntimeException e() { return new RuntimeException(); }
2 void p(String s) { System.out.println(s); }
3

4 void m(Serializable serializable) {
5 if(serializable == null) return ;
6 Object o = (Cloneable) serializable;
7 String s = o.toString();
8 StringBu�er sb0 = new StringBu�er();
9 StringBu�er sb1 = sb0.append(s);
10 if(sb0 != sb1)
11 throw e();
12 p(sb0.toString());
13 }

Listing 3. Java code used to generate TACAI

3 Evaluation
Next, we evaluate the costs and bene�ts of our IRs along the
following four dimensions:

RQ1 Howdoes computing TACAI a�ect the performance;
the time required to compute the IR?

RQ2 How does TACAI a�ect the overall number of three-
address code statements?

RQ3 In how many cases are we able to provide more
precise receiver-type information when compared to
the representation o�ered by the Soot Framework?

RQ4 How does it a�ect the precision of subsequent anal-
yses; in particular call graph algorithms?

Setup. We perform three experiments to answer our re-
search questions.We analyze �ve programswith mainmethod
from the XCorpus [6]: jasml, javacc, jext, proguard, sablecc.
This is necessary for the call graphs in the third experiment.

All measurements are taken on a Mac Pro with a Xeon E5
with 8 cores@3GHz and a JVM with 24GB of heap space.

Experiment 1. The �rst experiment aims to answer RQ1
and RQ2 and evaluates how exchanging the abstract interpre-
tation domains a�ects TACAI’s output and its transformation
performance. In order to compare the results, we generate
Shimple,TACAIL0,TACAIL1, andTACAIL2 (cf. Section 2) for
all methods of our evaluation programs.
Table 2 shows the experiment’s results. The �rst three

columns show the analyzed project, the number of its classes
and methods, respectively. Column four indicates the IR
the values in columns �ve to ten belong to. Those columns
present the total number of instructions, the average instruc-
tion count per method, its median, and standard deviation.
Whereas the call graph’s size is irrelevant here, the last col-
umn presents the time it takes to generate the IR.

Comparing the runtimes reveals that TACAIL0, TACAIL1,
and TACAIL2 are mostly computed signi�cantly faster than
Shimple. One exception is javaccwhereTACAIL2 took slightly
slower than Shimple. The best speedup w.r.t. Shimple of
roughly 4.5× is achieved on proguard.

We conclude that TACAI’s general design is feasible. TACAI
can be generated faster than Shimple, even using the most
precise con�guration TACAIL2. Additionally, the overhead
to compute TACAIL1 compared to TACAIL0 is almost negli-
gible. To answer RQ1, computing more precise information
takes time. However, when the extra information (e.g. null-
ness) provided byTACAIL1 andTACAIL2 are required by an
analysis, this time consumption is justi�able.

When we consider the number of instructions (cf. Table 2),
its reduction is less than 1%. Hence, we conclude with re-
gards to RQ2 that the reduction of three-address statements
is negligible for our evaluation programs.This is, however,
expected because if it would be otherwise, it would indicate
dead code [8].

Experiment 2. Here, we compare the type information
that is available in Shimple,TACAIL0, andTACAIL2 in order
to answer RQ3. We chose Shimple because it is an SSA-based
TAC representation and is thus closer to TACAI than Jimple.
WALA’s IR does not provide any re�ned type information
over the types available directly in the bytecode. To perform
the experiment, we compare each IR’s receiver-type infor-
mation of all potentially polymorphic method invocations.

The comparison across Soot’s Shimple and OPAL’s TACAI
is carried out as follows: First, we generate Shimple for all
program methods. Afterward, we traverse each method’s
Shimple linearly and memorize for each polymorphic invoca-
tion its surrounding method, the invokedmethod’s signature,
the line numberit occurred in, and its receiver type. Linear

3

Conference’17, July 2017, Washington, DC, USA M. Reif et al.

Table 1. Transformed TACAI bytecode from Listing 3 using OPAL’s Level 0, Level 1, and Level 2 domains. Blue lines mark
di�erences compared to lower levels. Light-blue lines are only syntactic changes.

TACAIL0 TACAIL1 TACAIL2

void m(Serializable) { void m(Serializable) { void m(Serializable) {
0: if(p1 ! = null) goto 2 0: if(p1 ! = null) goto 2 0: if(p1 ! = null) goto 2
1: return 1: return 1: return
2: (Cloneable) p1 2: (Cloneable) p1 2: (Cloneable) p1

p1 <: Cloneable p1 <: Serializable with Cloneable p1 <: Serializable with Cloneable
p1 not null p1 not null

3: lv3 = p1.toString() 3: lv3 = p1.toString() 3: lv3 = p1.toString()
4: lv4 = new StringBu�er 4: lv4 = new StringBu�er 4: lv4 = new StringBu�er

lv4 not null lv4 not null
5: lv4.<init>() 5: lv4.<init>() 5: lv4.<init>()
6: lv6 = lv4.append(lv3) 6: lv6 = lv4.append(lv3) 6: lv4.append(lv3)

/* expression value ignored */
7: if(lv4==lv6) goto 10 7: if(lv4==lv6) goto 10 7: ; /* NOP */
8: lv8 = p0.e() 8: lv8 = p0.e() —
9: throw lv8 9: throw lv8 —
10: lva = lv4.toString() 10: lva = lv4.toString() 8: lv8 = lv4.toString()
11: p0.p(lva) 11: p0.p(lva) 9: p0.p(lv8)
12: return 12: return 10: return

} } }

Table 2. Performance results from Experiment 1.

project #classes #methods representation #instructions avg. median st. dev. #call edges runtime

jasml 50 265

Shimple - - - - 5 792 7.6s
TACAIL0 14 164 53.5 12 307.5 5 195 3.5s
TACAIL1 14 163 53.5 12 307.5 5 065 3.9s
TACAIL2 14 066 53.4 12 307.5 5 065 6.9s

javacc 154 2151

Shimple - - - - 73 884 10.9s
TACAIL0 81 917 38.1 11 150.2 71 515 4.2s
TACAIL1 81 683 38.0 11 150.2 71 003 5.4s
TACAIL2 81 651 38.0 11 150.0 70 985 11.5s

jext 466 2799

Shimple - - - - 40 670 19.2s
TACAIL0 73 428 26.2 6 119.8 17 335 4.6s
TACAIL1 73 358 26.2 6 119.8 17 297 5.0s
TACAIL2 73 334 26.2 6 119.7 17 291 6.4s

proguard 645 5237

Shimple - - - - 49 260 26.3s
TACAIL0 70 203 13.4 5 140.4 46 218 4.4s
TACAIL1 70 194 13.4 5 140.4 46 096 4.7s
TACAIL2 69 859 13.4 5 140.4 43 535 5.8s

sablecc 286 2274

Shimple - - - - 57 021 10.3s
TACAIL0 35 717 15.7 5 50.6 52 076 4.1s
TACAIL1 35 715 15.7 5 50.6 50 939 5.0s
TACAIL2 35 715 15.7 5 50.6 50 939 6.3s

traversal allows us to distinguish multiple invocations within the same line. Then, we generate TACAI in its current con�g-
uration and match each call site with those recorded by Soot.

4

TACAI: An Abstract-interpretation-based IR Conference’17, July 2017, Washington, DC, USA

Next, we compare the call site’s receiver types to determine
if Shimple’s type information is more precise than ours or
vice versa. If both types are equal, we consider them equally
precise if TACAI does not know that its type information
is precise, i.e., the exact runtime type is known. In case of
precise type information, TACAI is only considered more
precise when the precise type has subtypes. When intersec-
tion types are inferred, we always consider them to be more
precise. However, when TACAI reports union types, we only
consider them to be more precise if each type contained in
the union is more precise than Shimple’s receiver type. Call
sites are marked as incomparable when they are not present
in either representation.
All results are reported in Table 3 which shows the eval-

uated project, the compared representations, the project’s
invocation count, the number of unmatchable call sites, the
total number of receiver types that are known to be non-
null, the number of invocations with precise receiver-type
information, as well as how many call sites the receiver-type
information provided by Shimple is equal, better, or worse
when compared to TACAI.

Table 3’s data shows that we were able to match most
call sites across Shimple and TACAI’s representation. While
comparing both IRs on Proguard, 520 remain unmatched. A
closer investigation revealed that Shimple falsely optimizes
exception handlers that pertain to JVM-level exceptions (e.g.
ArrayIndexOutOfBoundsException) which leads to many
unmatchable call sites in Proguard. Additionally, the call
sites that cannot be matched in case of javacc are caused
by TACAIL2’s selective inlining.
When we only consider matchable call sites, we observe

that the receiver-type information across Shimple,TACAIL0,
and TACAIL2 are mostly equal. Whereas Shimple never pro-
vides more type information than even TACAIL0, TACAIL2
can maximally improve on jext where it has more precise
information for 467 receivers. However, the overall number
of improvements pertaining to receiver-type information is
small. When comparing the availability of nullness informa-
tion, i.e., the number of cases where we de�nitively know
that a receiver is non-null and no NullPointerException
can be thrown, betweenTACAIL0 andTACAIL2, we observe
that non-nullness information is at least available in 11 % of
all cases in sablecc and up to 40 % of all cases in jasml.
Drawing a conclusion to RQ3, we observe that our ap-

proach improves little over Shimple w.r.t. receiver-type infor-
mation. However,TACAIL1 andTACAIL2 provide additional
information useful for static analysis, e.g. nullness.

Experiment 3. Our last experiment evaluates how ex-
changing abstract domains in�uences the c all graph con-
struction, answering RQ4. To measure the e�ect, we con-
struct a class hierarchy analysis (CHA) call graph since it

is solely based on the declared types.However, other algo-
rithms (e.g. RTA [12]) may also bene�t from more precise
type information.
Table 2 provides the call graph’s size in the number of

edges in the second last column. Whereas we can observe
a great reduction of call edges compared to Shimple (up to
58%), the reduction of call edges between TACAI remains
minuscule (up to 6%).

Therefore, we observe that the direct impact on call graphs
between our IRs for our evaluation set is minor. However,
the analyzed programs are rather small in size which lets
us assume that the e�ect on larger programs could increase.
More research is necessary to de�nitely answer RQ4.

4 Related Work
Static analysis tools often work on an intermediate represen-
tation (IR) of bytecode which facilitates static analysis. For
instance, Soot [13] provides several IRs to operate on: Baf,
Jimple, Grimple, and Shimple. However, Jimple and Shimple
are the only TAC-based representations. Jimple is generated
in 5 steps [14]. At �rst, a naïve, verbose, and typeless TAC is
generated. Step 2 takes the generated TAC and applies sev-
eral code optimizations, such as constant propagation and
dead code elimination. Step 3 splits, step 4 types, and step 5
packs local variables so that they are reused as often as possi-
ble. Shimple is produced by converting Jimple into SSA form.
In contrast to TACAI, neither Jimple nor Shimple perform
all optimizations in one step. Compared to Jimple/Shimple
which always provide a type bound, TACAI can provide
union and intersection types and derives the information if
a speci�c type is an upper-type bound or a concrete type.
Further, TACAI provides a comparable IR when it is con�g-
ured with its cheapest domain but can be computed faster.
Moreover, when advanced domains are con�gured, TACAI
can directly provide additional information, such as def-use
information or a variable’s nullness.
Demange et al. [5] tackle the problem that an analysis

result’s correctness strictly depends on the correctness of
the performed transformation from the original bytecode to
the IR. To mitigate the risk, they provide a formal seman-
tics for an untyped, stack-based Java-like bytecode language,
called BC. BC, however, lacks several Java bytecode features
(e.g. static �elds). Using the de�ned semantics, they pro-
vide a one-pass transformation algorithm that takes BC as
input and then generates a TAC-based intermediate repre-
sentation, called BIR. BIR is proven to preserve the code’s
semantics. During the transformation, a symbolic stack is
used to decompile bytecode into TAC. However, proposed
transformation works only for a subset of Java bytecode and
does not aim at making the precision con�gurable.

5

Conference’17, July 2017, Washington, DC, USA M. Reif et al.

Table 3. Receiver Type Information of Experiment 2.

project representation #inv. #failed not null precise #equal #Shimple better #TACAI better

jasml Shimple vs TACAIL0 2 094 37 0 843 2 057 0 0
Shimple vs TACAIL2 2 094 37 838 1 028 1 987 0 70

javacc Shimple vs TACAIL0 9 883 0 0 4 709 9 878 0 5
Shimple vs TACAIL2 9 722 20 3 551 4 925 9 546 0 164

jext Shimple vs TACAIL0 15 457 2 0 2 803 15 450 0 5
Shimple vs TACAIL2 15 455 2 5 709 3 406 14 986 0 467

proguard Shimple vs TACAIL0 9 961 520 0 3 560 9 439 0 2
Shimple vs TACAIL2 9 959 520 3 694 4 168 9 083 0 356

sablecc Shimple vs TACAIL0 35 717 0 0 4 542 35 716 0 1
Shimple vs TACAIL2 35 715 0 4 143 5 180 35 262 0 453

5 Conclusion
In this paper we presented TACAI, an abstract-interpretation-
based intermediate representation with con�gurable abstract
domains. Our intermediate representation directly comes
with three precon�gured abstract domains which—when
used—result in three-address codes with di�erent levels of
precision regarding nullness or available type information.
Our evaluation shows that TACAI is worth researching.

It is faster to compute than Soot’s Shimple and encodes
with TACAIL1 and TACAIL2 also encodes more information.
However, the improvements are minor. In future work, we
will further experiment with di�erent domains that can be
useful for various static analyses, such as an abstract domain
pertaining to the tracking of strings.

Acknowledgments
This work was supported by the DFG as part of CRC 1119
CROSSING, by the German Federal Ministry of Education
and Research (BMBF) as well as by the Hessen State Min-
istry for Higher Education, Research and the Arts (HMWK)
within their joint support of the National Research Center
for Applied Cybersecurity ATHENE.

References
[1] Eric Bodden. 2018. The secret sauce in e�cient and precise static anal-

ysis: the beauty of distributive, summary-based static analyses (and
how to master them). In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops. ACM, 85–93.

[2] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD: eliminat-
ing array bounds checks on demand. In ACM SIGPLAN Notices, Vol. 35.
ACM, 321–333.

[3] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. 1991. E�ciently computing static single assign-
ment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13, 4 (1991), 451–490.

[4] Je�rey Dean, David Grove, and Craig Chambers. 1995. Optimization
of object-oriented programs using static class hierarchy analysis. In
European Conference on Object-Oriented Programming. Springer, 77–
101.

[5] Delphine Demange, Thomas Jensen, and David Pichardie. 2010. A
provably correct stackless intermediate representation for Java byte-
code. In Asian Symposium on Programming Languages and Systems.
Springer, 97–113.

[6] JB Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus–
An executable Corpus of Java Programs. (2017).

[7] Michael Eichberg and Ben Hermann. 2014. A software product line for
static analyses: the OPAL framework. In SOAP@PLDI. ACM, 2:1–2:6.

[8] Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid Glanz. 2015.
Hidden Truths in Dead Software Paths. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, 474–484.

[9] IBM. [n.d.]. WALA - Static Analysis Framework for Java. h�p://wala.
sourceforge.net/. [Online; accessed 19-APRIL-2018].

[10] Steven Muchnick et al. 1997. Advanced compiler design implementation.
Morgan Kaufmann.

[11] Yannis Smaragdakis. [n.d.]. DOOP - Framework for Java Pointer and
Taint Analysis. h�ps://bitbucket.org/yanniss/doop/. [Online; accessed
23-August-2018].

[12] Vijay Sundaresan, Laurie Hendren, Chrislain Raza�mahefa, Raja
Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. 2000.
Practical virtual method call resolution for Java. ACM SIGPLAN Notices
35, 10 (2000), 264–280.

[13] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. 2010. Soot: A Java bytecode optimization
framework. In CASCON First Decade High Impact Papers. IBM Corp.,
214–224.

[14] Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplifying Java
bytecode for analyses and transformations. (1998).

6

http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://bitbucket.org/yanniss/doop/

	Abstract
	1 Introduction
	2 Approach
	3 Evaluation
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

