Know Your Analysis: How Instrumentation Aids
Understanding Static Analysis

Philipp Dominik Schubert
philipp.schubert@upb.de
Heinz Nixdorf Institut
Paderborn, Germany

Ben Hermann
ben.hermann@upb.de
Heinz Nixdorf Institut

Paderborn, Germany

Abstract

The development of a high-quality data-flow analysis—one
that is precise and scalable—is a challenging task. A concrete
client analysis not only requires data-flow but, in addition,
type-hierarchy, points-to, and call-graph information, all of
which need to be obtained by wisely chosen and correctly
parameterized algorithms. Therefore, many static analy-
sis frameworks have been developed that provide analysis
writers with generic data-flow solvers as well as those ad-
ditional pieces of information. Such frameworks ease the
development of an analysis by requiring only a description
of the data-flow problem to be solved and a set of framework
parameters. Yet, analysis writers often struggle when an
analysis does not behave as expected on real-world code. It is
usually not apparent what causes a failure due to the complex
interplay of the several algorithms and the client analysis
code within such frameworks. In this work, we present some
of the insights we gained by instrumenting the LLVM-based
static analysis framework PhASAR for C/C++ code and show
the broad area of applications at which flexible instrumen-
tation supports analysis and framework developers. We
present five cases in which instrumentation gave us valuable
insights to debug and improve both, the concrete analyses
and the underlying PhASAR framework.

CCS Concepts + Theory of computation — Program
analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6720-2/19/06...$15.00
https://doi.org/10.1145/3315568.3329965

Richard Leer
rleer@mail.upb.de
Heinz Nixdorf Institut
Paderborn, Germany

Eric Bodden
eric.bodden@upb.de
Heinz Nixdorf Institut
Fraunhofer IEM
Paderborn, Germany

Keywords Static analysis, framework, instrumentation,
C/C++

ACM Reference Format:

Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric
Bodden. 2019. Know Your Analysis: How Instrumentation Aids Un-
derstanding Static Analysis. In Proceedings of the 8th ACM SIGPLAN
International Workshop on the State Of the Art in Program Analysis
(SOAP ’19), June 22, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3315568.3329965

1 Introduction

There are several reasons why the development of a precise
and scalable data-flow analysis is difficult. Concrete client
analyses often need additional helper analyses to provide
them with type-hierarchy, points-to, and call-graph informa-
tion in order to provide precise results [5].

However, writing a client analysis and all required helper
analyses from scratch is impractical. For this reason, many
different static analysis frameworks have been developed to
ease that process. Frameworks from academia, among others,
include Soot [9], Doop [6], Wala [20], OPAL [7], Soufflé 8],
and PhASAR [16]. Those frameworks provide implementa-
tions for the helper analyses and generic data-flow solvers
that are able to solve a given user-specified data-flow prob-
lem in a fully automated manner. Thus, an analysis writer
can focus on specifying the actual analysis problem.

Encoding an analysis is still tedious as an analysis devel-
oper has to perform a tremendous amount of complex tasks.
Encoding an analysis in a general purpose language, for in-
stance, as required by frameworks such as Soot, Wala, or
PhASAR still requires an analysis developer to write several
hundred to thousand lines of code that comprise the problem
description [19]. Choosing the parameters for their analysis
is also non-trivial as the parameters have to be chosen accord-
ing to an analysis’s requirements and the target program’s
characteristics to trade off precision and scalability.

The complexity further increases for frameworks that use
analyses encoded in general purpose languages as they often

https://doi.org/10.1145/3315568.3329965
https://doi.org/10.1145/3315568.3329965

SOAP 19, June 22, 2019, Phoenix, AZ, USA

use distributive frameworks like inter-procedural finite dis-
tributive subset problems (IFDS) [13], inter-procedural distribu-
tive environments (IDE) [15], or weighted pushdown systems
(WPDS) [14] to achieve a decent scalability [5]. Those data-
flow frameworks, in turn, solve a problem in a multi-step
process. In general, an internal representation, e.g. exploded
super-graph or pushdown system, is constructed first and
then, the problem is solved on that representation in a sec-
ond step. A buggy analysis might withstand the construction
but still fail the actual solving process.

Eventually, an analysis developer has encoded their analy-
sis successfully with respect to a micro-benchmark that has
been used to develop it (c.f. Section 2). Applying the anal-
ysis to real-world software, however, they will frequently
observe their analysis to fail [19]. The reasons for such a
failure can be manifold and oftentimes hide in the complex
interplay of the involved algorithms and the complex nature
of the analysis description.

Debugging analysis failures is non-trivial as it requires
knowledge of algorithms, solvers, executing system, target
programs, and intermediate representations. Detecting the
cause of the failure with help of a standard debugger is usu-
ally a tedious to impossible task as the analysis developer
needs to debug through large amounts of non-analysis code;
it might be not helpful at all if the analysis is correct but the
executing operating system causes an analysis run to fail, e.g.
if the system runs out of memory. The work of Nguyen et
al. [12] presents a special debugger for static analysis which
shows the severity of the problem. The use of logging tech-
niques produces log files that are too large to effectively
debug failure on real-world code or slows down the analysis
execution to a point that is not acceptable.

In this work, we show how a flexible instrumentation of a
static analysis framework is able to aid the understanding
of concrete analysis runs. Using an instrumentation in com-
bination with a post-processing step of the recorded data
allows to spot anomalies and root causes of analysis failures
that would otherwise remain hard to detect when analyzing
real-world software. In addition, an extensive instrumen-
tation allows for detailed performance benchmarks which,
in turn, allow for spotting bottle-necks and fine-tuning an
analysis. Different algorithms can be assessed based on their
performance on the target code and a framework user is able
to precisely determine how much time of an analysis run is
spend in which parts of a framework.

In summary, this paper makes the following contributions:

o It presents our highly flexible instrumentation of the
PhASAR framework [16] called PAMM,

e and an experience report that presents five cases in
which the instrumentation provided us with valuable
insights into concrete analysis runs that we used for
debugging and optimizations.

Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden

2 Analysis Development Process

In this section, we briefly explain a commonly used process
to develop a client data-flow analysis.

The most labor-intensive task involved in this process is
crafting the description of the analysis problem. Depending
on the static analysis framework that has been chosen, a
developer needs to implement flow functions or specify rules
in order to model the interaction of a program’s statements
with the data-flow facts that the developer is interested in.

The creation of an analysis description is an incremental
process. In order to evaluate the correctness and the level
of precision, a developer starts specifying their analysis to
handle the basic language features and tests it on small ex-
ample programs. The results reported by the analysis on
the example programs are checked and compared to the ex-
pected results. Once the quality of the results suffices for
the initial example programs, some more advanced exam-
ple programs are written. These example programs form a
micro benchmark that allows a developer to evaluate the
quality and completeness of their analysis description. The
example programs, that act as test cases, and the analysis
code are alternately enhanced until the analysis is able to
cope with all common language features and obtains the
desired precision. Several micro benchmarks such as Droid-
Bench [2], SecuriBench [3], DaCapo [4], or the Toyota ITC
benchmark [17] have been established to evaluate the quality
of an analysis which shows that the development process
described here is common practice.

When the complexity of the programs of the micro bench-
mark has risen to a certain level, another part of the develop-
ment process becomes relevant: the framework’s parametriza-
tion. Many frameworks allow for the construction of the type
hierarchy, call-graph and points-to information which be-
come necessary depending on the complexity of the test
programs and the desired precision of the analysis when
eventually run on real-world software. For instance, for the
construction of call-graph and points-to information devel-
opers can choose from a variety of algorithms such as CHA,
DTA, VTA, Spark for call-graphs, or Andersen or Steensgard-
style algorithms for points-to information. Computations
can be chosen to be performed in a full analysis mode or
an on-demand manner. Finding the best or at least suitable
parameters, however, is challenging. While heavy-weight
algorithms may produce precise results on the small test
programs, they are oftentimes too slow to be used on larger
real-world code. Finding the optimal point between scalabil-
ity and precision is key and an ongoing challenge [5].

3 Distributive Frameworks

If the data-flow problem to be solved is distributive it can
be encoded using analysis frameworks such as IFDS [13],
IDE [15], or WPDS [14]. The key idea of those frameworks
is to create summaries for each procedure p which can then

Know Your Analysis

AQO be

. . Ax.1 (A, %)y > (A, %) Ax.x
mea= b l/\ (A, 2) = <{a,3) Ax.1
T (@,3) <> (a,4) Ax.x+2
a=a+ \1/ l//lx.x+2 (a,4) = (a,5) Ax.x
e o o (a, 5) — (a) Ax.x
. Ax.x-4
intb=a+ 4; {(a, 4) =< (b,5) Ax.x -4
{ i\o (b, 5) = (b) Ax.x
return b; l/ l/ l/
e o o

Figure 1. Exploded super-graph (left) and rules of a push-
down system (right) for a linear constant propagation per-
formed on program P shown in Listing 1.

be (re)used in each subsequent context p is called. Therefore,
analyses encoded within those frameworks turn out to be
scalable and precise due to the co-context sensitivity that is
achieved using the summary mechanism.

The distributive frameworks construct a specific represen-
tation of the problem according to the developer’s problem
specification first, e.g. an exploded super-graph (ESG) in IFD-
S/IDE or a pushdown system in WPDS. Then, the problem
is solved using the internal solver specific representation.
The exploded super-graph for IFDS/IDE and the set of rules
A of a pushdown system for a linear constant propagation
performed on program P shown in Listing 1 are shown in
Figure 1. A linear constant propagation is an analysis that
tracks constant variables and their values, and variables that
linearly depend on constant values through the program.

int a = 1; a = a + 2; int b = a « 4; return b;

Listing 1. Program P

4 Implementation

While designing PAMM we opt for a ready-to-use mecha-
nism to collect different measures related to static analysis.
Three basic types of measures turned out to be useful in
practice: timer, counter, and histogram. We provide code
to start, pause, stop and reset different timers, increase and
decrease counters by a given value, and add data points to his-
tograms. All measures used are identified by user-specified
IDs and must be registered before use. This allows us to detect
and minimize exceptional measurements caused by flawed
code instrumentations, e.g. a misspelled ID. We implemented
PAMM as a singleton to minimize boilerplate for the con-
struction and destruction of PAMM. Each instrumentation
instruction is wrapped into a corresponding preprocessor
macro to hide implementation details. This also allows a user
to disable PAMM without removing any code instrumenta-
tion manually, and thus, guaranteeing zero overhead during
non-evaluation runs of PhASAR. However, recompilation is
necessary to enable or disable PAMM.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

Since code instrumentation is tedious and oftentimes re-
quires a profound knowledge of PhASAR’s internal structure,
we provide a default instrumentation for all parts of PhnASAR
relevant to static analysis. Multiple measures can be grouped
which allows a user to only collect the data of analysis runs
that they are currently interested in. A user is able to instru-
ment their own analysis code and register their instrumenta-
tion in a new group to record their client measures without
using the default (full) framework instrumentation. Our in-
strumentation of the core group, for instance, comprises,
among other measures, runtime information for each step
of an analysis run and statistics of the analyzed program.

5 Experience Report

In this section, we discuss five cases in which PAMM pro-
vided valuable insights for debugging and optimizations.

5.1 Bug Finding and Detection of Anomalies

The GNU coreutil programs [1] are frequently used as a sub-
ject for evaluations on real-world C programs. To check the
capabilities of the PhASAR framework to handle real-world
code, we benchmarked it on the coreutils using several dif-
ferent analyses encoded in IFDS. We found that some of the
analysis runs caused a segmentation fault. The backtracing
capability of the GNU debugger GDB gave no useful clues
what might have caused the segmentation fault. The Val-
grind [11] tool for dynamic debugging memory issues was
not usable while analyzing the coreutils as it slowed down
the execution too much in the order of days. Unfortunately,
it also did not report any errors using the micro-benchmarks
that have been used to develop the analyses. As we used
PAMM to record the analysis runs of the different coreutils
and visualized the results, we found a correlation between
lines of code, number of call-sites of the programs and the
occurrences of segmentation faults. The plot is shown in fig-
ure Figure 2. The analysis of coreutils with more than 240k
lines of code has led to segmentation faults and with more
than 20k call sites have been likely to crash. Based on the
recorded data, we assumed that the recursive nature of our
IFDS/IDE solver implementation could be troublesome due
to the operating system’s default stack limit for processes.
Increasing the stack limit indeed solved the problem and
almost all programs of the coreutils could be successfully an-
alyzed using a larger stack limit. The exceeded stack limit has
been confirmed with help of the Linux kernel’s ring buffer,
too.! A small number of coreutils still caused segmentation
faults regardless of the chosen analysis. That suggested that
either the framework or all analyses did not cope with an
infrequently used language feature. The backtracing capa-
bilities of GDB revealed the segmentation fault to be caused
by the flow function that handled function calls. A manual
inspection uncovered that the failure was caused by C-style

IThe kernel stores a certain number of (error) log messages in a ring buffer.

SOAP 19, June 22, 2019, Phoenix, AZ, USA

B #Succ. Test
mm #Failed Test

350
200

300 4

100
150 4

100 4
504

504

ANMYNONDOOANNIINON DN O
ArAdA A A H N

#Call Sites (k)

Figure 2. Number of analysis runs that executed
(un)successfully and corresponding number of call
sites and instructions of the program under analysis.

variadic functions which have not been handled by the anal-
yses yet. At call sites that call variadic functions, the number
of actual and formal parameters may not match. After ad-
justing the responsible flow functions to under-approximate
that language feature in the analyses, all analysis runs could
be executed successfully. Our handling of variadic functions
is unsound. However, it retains an acceptable level of preci-
sion whereas a sound handling would lead to impractically
imprecise results.

In a different scenario, we inspected the distribution of
data-flow facts generated by an analysis. That is, we wanted
to know the sizes of the sets of data-flow facts generated
by the flow functions. For that reason, we instrumented
PhASAR’s IFDS/IDE solver to record the number of data-
flow facts (ESG edges) generated at each statement. With
the help of that information, we aimed at optimizing for the
container type used to store the data-flow facts. Our initial
implementation used STL’s std: : set which implements a
red-black tree. In order to optimize for the container type,
we measured the occurrences of different set sizes for an
IFDS taint analysis which are shown in Figure 3. Figure 3
confirms that the vast majority of sets only contain very few
elements. Therefore, we might wanted to switch to an imple-
mentation that is better suited for small sets such as Boost’s
flatset implementation which uses a sorted vector and a
binary search to allow for logarithmic lookups. Interestingly,
however, some sets contained an exceptionally large amount
of facts caused by what is called "overtainting" [18]. We re-
visited the implementation of the taint analysis and found
a place at which all context-insensitive aliases have been
accidentally tainted when a tainted value has been stored
to a memory address. We could change the responsible flow
function to only generate the relevant aliases. We will con-
tinue the discussion of the set implementations in terms of
performance in Section 5.2.

Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden

7J% 107 T+ 107
10 I mv + log + stat
1057 10° 1 10 { %
103 |* 103 4 4 103 {*
yﬂ + + L * oLt N
1 1] 1] e + ¥
Lot1g &% 014, F+ L0t &
, 0 200 400 600 ., ©O 200 400 0 100 200 300
107 B ¥
" tail n chcon wc
10547 105 - ¢ Lo° 17
+
g s 4% o]
o 10° 10° o 1
c - + + + + +
@ Lot * * + 1 ot +
S 10144 "t Lot 3kt ?"’:‘ L0t | # ﬁ‘%
o T T T T T T T T T
é 1070 200 400 600 0 200 o7 0 100 200 300
+ + +
. dbformat - chmod . chgrp
10° 10° -+ 10° 4 #
*
+
102 o3 4 o? %
1 4+ + PR + I
1| =" 1]t .+ e +
10 10" 1 4+ 10" o 4+ .
* 3 -
0 250 500 750 0 200 0 200
- 107 1 107
* In - chown . rm
10° 1, 10° - & 10° 4 +
10341 103 {% o3
" o 1‘4- + 4 + PRI S + T
101 .4 * 101 4%+ ?V: . ot { it ﬁ.
-+ + -+ *
0 200 0 200 0 200

Set size

Figure 3. Occurrences of the different sizes of sets generated
during ESG construction for several target programs.

5.2 Performance Benchmarking for Optimizations

Let us revise our assumption from Section 5.1 that the more
compact flatset implementation might be more efficient
than the STL implementation in our case. In order to de-
termine which implementation is better suited to hold the
flow facts, we created a separate git branch in which we
replaced the usages of std: :set by boost:: flatset. Since
we initially already heavily instrumented PhASAR, we did
not need to change any of the code other than specifying the
container type to be used. We evaluated the performance by
performing some analysis runs on the coreutils and some
tools of the LevelDB project using a compile of PhASAR that
uses std: : set and compared the runtimes of various IFDS
data-flow analyses with the figures obtained using a compile
of the novel branch that uses the flatset implementation.
Figure 4 shows a plot of the performance figures that we pro-
duced. In general, the difference in performance is negligible.
The IFDS/IDE solver uses the sets to communicate with the
analysis’s description only. Much more copying or accessing
of those sets would be needed to cause a larger difference in
performance. We thus sticked to std: : set for convienience.

The C++11 standard introduced novel types for smart
pointers that can be used to automatically deallocate heap
memory that is no longer in use. std: :unique_ptr can be
used to handle memory that is limited to only one user; it
is deallocated when the pointer goes out of scope unless
ownership is explicitly transferred to another scope. An-
other type of smart pointer is std: : shared_ptr that can be

Know Your Analysis

70 4
B boost::flatset

std::set

Time (sec)
Py w o
o o o
L s L

w
o
L

N
o
N

._.
o o

(U) chcon {W—
(U) chgrp s
(U) chmod R ——
(U) chown P
Y

rm J—

(T) we
(U, wC P ——

il el el

a 3 o o > ~ ==

§§ 55828 SS8EEERTT

£ £ o EES a2 ~=o - =

ctuvuvgs5E6fge~E2232gE2
CSESZ2-~=83s
L = = = T ©
E3

Figure 4. Runtimes using std: : set vs. boost: : flatset in
seconds for different programs and analysis runs.

used if a piece of heap memory has more than one owner.
It uses reference counting to determine at which point the
memory can be deallocated. Our IFDS, IDE and WPDS solver
implementation query the client analysis’s code for flow and
edge functions for each statement of the target program. The
analysis code provides the respective solver with suitable
implementations of these small function objects by return-
ing a shared pointer. Shared pointers entail some amount
of overhead due to the additional code that maintains the
references and their larger size in memory. Using PAMM we
were able to compare the initial implementation of PhASAR
using smart pointers to an implementation that uses raw
pointers. Figure 5 shows the comparison of smart and raw
pointers in terms of runtimes. It can be observed that the
use of shared pointers slows down each analysis run. We
mitigated the noticeable slowdown due to the use of shared
pointers as described in the following. Since the use of raw
pointers in application code is considered bad style, we in-
troduced a manager class that exclusively owns the shared
pointers to flow and edge function objects following a recom-
mended pattern: the manager class is able to hand out raw
pointers to users that are "only looking" at the object; and
eventually deallocates all objects it owns once its lifetime
ends. Thus, the more expensive copying of shared pointers
can be avoided which prevents the slowdown.

In Section 2 we discussed that parameterizing an analysis
framework is challenging. Always using the most precise
algorithms wherever possible may lead to great precision
but also to unsatisfactory performance for larger target pro-
grams. We do not want to rely on choosing an algorithms’
parameters based on experience only. Depending on the
target program under analysis the experience from analyz-
ing one project might lead to false assumptions for another
project. Therefore, we used PAMM to instrument all parts
of PhASAR that are involved to perform a full analysis run.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

3.0 raw raw
W shared = shared
60

50

D D O O DO > Q O d WD N D QO & D D N
S &S & ST TS
‘&0(\ > @°° & S @ & & S ST F S &
S &6 oS
800 3000
raw raw
700 mmm shared mmm shared
2500
600
2000
500
400 1500
300
1000
200
500
100
0 - — —_— 0
o o o o o QD o > O o o O o
R I I O P\ R O3 3 3 N2 N
S @oé 6‘@ 6@&\0 S ‘}\ & & & &
& & & &

Figure 5. Runtimes using smart vs. raw pointers in seconds
for different programs and analysis runs.

T T
class hierarchy s
points-to

100 | call-graph ==
data-flow
total =

T T T T T T T T 1
d

T

Kill cat unig we join p Is M PhASAR

[62304] [62588] [62663] [63166] [64196] [65287] [67097] [71712] [1351735] [1368297)
Program [#Statements]

Figure 6. Runtime spend in different parts of an analysis.

Thus, we are able to reveal the analysis runtime distribution
of a concrete analysis run. Figure 6 shows such a distribution.
Using that knowledge, one can then start adjusting specific
parameters to speed up certain computations to cope with
larger programs while comparing the precision based on the
results obtained for the micro-benchmarks.

6 Related Work

The setup of a static analysis, encoding it in a framework,
and finding a suitable parametrization, is a demanding task.
Several works have been dedicated to reduce and ease the
work that needs to be accomplished by analysis developers.

Lerch et al. developed an approach following the principle
of separation of concerns [10]. They propose an approach
that effectively separates different aspects and implemen-
tations to allow for better maintainability, testability, and
reuse of individual components.

A special debugging environment for static analysis called
VISUFLOW has been developed by Nguyen et al. [12] for

SOAP 19, June 22, 2019, Phoenix, AZ, USA

the Java ecosystem. It allows for a direct debugging of the
analysis code in Soot without having to step through any of
the framework code which makes the process of debugging
an analysis feasible in practice.

7 Conclusion

In this paper, we presented the design and implementation of
a flexible mechanism for instrumentation called PAMM. We
presented five scenarios in which it provides us with valuable
insights that help us to understand what a concrete static
analysis run on real-world code actually does. In general,
we find that PAMM can be used in addition to or whenever
standard debugging techniques are unable to track down
the cause of an analysis failure. We advocate for integrating
ready-to-use mechanisms that aid analysis understanding
and debugging into the analysis frameworks to support de-
velopers, rather than burdening them with yet additional
work. The data collected by the fine-grain instrumentation
in combination with a suitable visualization allows for a
gaze into concrete analysis runs. Thus, it enables us to spot
anomalies and implausible figures. With these insights, we
are able to determine how an analysis performs and where
it goes wrong helping us to solve issues in a user’s analysis
code and the PhASAR analysis framework.

Acknowledgments

This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Cen-
tre 901 "On-The-Fly Computing" under the project number
160364472-SFB901 and the Heinz Nixdorf Foundation.

References

[1] 2019. coreutils. Retrieved 04/02/2019 from https://www.gnu.org/
software/coreutils/coreutils.html

[2] 2019. DroidBench. Retrieved 04/02/2019 from https://github.com/
secure-software-engineering/DroidBench

[3] 2019. SecuriBench. Retrieved 04/02/2019 from https://suif.stanford.
edu/~livshits/work/securibench/intro.html

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis.
In OOPSLA °06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications.
ACM Press, New York, NY, USA, 169-190. https://doi.org/10.1145/
1167473.1167488

[5] Eric Bodden. 2018. The Secret Sauce in Efficient and Precise Static
Analysis: The Beauty of Distributive, Summary-based Static Analyses
(and How to Master Them). In Companion Proceedings for the ISSTA/E-
COOP 2018 Workshops (ISSTA °18). ACM, New York, NY, USA, 85-93.
https://doi.org/10.1145/3236454.3236500

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative
Specification of Sophisticated Points-to Analyses. In Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA °09). ACM, New York,
NY, USA, 243-262. https://doi.org/10.1145/1640089.1640108

Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden

[7] Michael Eichberg and Ben Hermann. 2014. A Software Product Line
for Static Analyses: The OPAL Framework. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis (SOAP ’14). ACM, New York, NY, USA, 1-6. https:
//doi.org/10.1145/2614628.2614630

Herbert Jordan, Bernhard Scholz, and Pavle Suboti¢. 2016. Soufflé:

On synthesis of program analyzers. In International Conference on

Computer Aided Verification. Springer, 422-430.

Patrick Lam, Eric Bodden, Ondvrej Lhotak, and Laurie Hendren. 2011.

The Soot framework for Java program analysis: a retrospective.

[10] Johannes Lerch and Ben Hermann. 2015. Design Your Analysis: A
Case Study on Implementation Reusability of Data-flow Functions. In
Proceedings of the 4th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis (SOAP 2015). ACM, New York, NY, USA,
26-30. https://doi.org/10.1145/2771284.2771289

[11] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI "07). ACM, New York, NY, USA, 89-100.
https://doi.org/10.1145/1250734.1250746

[12] Lisa Nguyen, Stefan Kriiger, Patrick Hill, Karim Ali, and Eric Bodden.
2018. VISUFLOW, a Debugging Environment for Static Analyses. In
International Conference for Software Engineering (ICSE), Tool Demon-
strations Track.

[13] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Inter-
procedural Dataflow Analysis via Graph Reachability. In Proceedings
of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL *95). ACM, New York, NY, USA, 49-61.
https://doi.org/10.1145/199448.199462

[14] Thomas Reps, Stefan Schwoon, and Somesh Jha. 2003. Weighted
Pushdown Systems and Their Application to Interprocedural Dataflow
Analysis. In Proceedings of the 10th International Conference on Static
Analysis (SAS’03). Springer-Verlag, Berlin, Heidelberg, 189-213. http:
//dl.acm.org/citation.cfm?id=1760267.1760283

[15] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise Inter-
procedural Dataflow Analysis with Applications to Constant Prop-
agation. Theor. Comput. Sci. 167, 1-2 (Oct. 1996), 131-170. https:
//doi.org/10.1016/0304-3975(96)00072-2

[16] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019.
PhASAR: An Inter-procedural Static Analysis Framework for C/C++.
In Tools and Algorithms for the Construction and Analysis of Systems,
Tomas$ Vojnar and Lijun Zhang (Eds.). Springer International Publish-
ing, Cham, 393-410.

[17] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. 2015.
Test Suites for Benchmarks of Static Analysis Tools. In Proceedings of
the 2015 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW) (ISSREW ’15). IEEE Computer Society, Wash-
ington, DC, USA, 12-15. https://doi.org/10.1109/ISSREW.2015.7392027

[18] Asia Slowinska and Herbert Bos. 2009. Pointless Tainting: Evaluating
the Practicality of Pointer Tainting. In Proceedings of the 4th ACM
European Conference on Computer Systems (EuroSys "09). ACM, New
York, NY, USA, 61-74. https://doi.org/10.1145/1519065.1519073

[19] John Toman and Dan Grossman. 2017. Taming the Static Analysis
Beast. In 2nd Summit on Advances in Programming Languages (SNAPL
2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Ben-
jamin S. Lerner, Rastislav Bodik, and Shriram Krishnamurthi (Eds.),
Vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 18:1-18:14. https://doi.org/10.4230/LIPlcs.SNAPL.2017.18

[20] WALA 2019. WALA. Retrieved 04/02/2019 from http://wala.
sourceforge.net/wiki/index.php/Main_Page

[8

—

[9

—

https://www.gnu.org/software/coreutils/coreutils.html
https://www.gnu.org/software/coreutils/coreutils.html
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://suif.stanford.edu/~livshits/work/securibench/intro.html
https://suif.stanford.edu/~livshits/work/securibench/intro.html
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/2771284.2771289
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/199448.199462
http://dl.acm.org/citation.cfm?id=1760267.1760283
http://dl.acm.org/citation.cfm?id=1760267.1760283
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1109/ISSREW.2015.7392027
https://doi.org/10.1145/1519065.1519073
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

	Abstract
	1 Introduction
	2 Analysis Development Process
	3 Distributive Frameworks
	4 Implementation
	5 Experience Report
	5.1 Bug Finding and Detection of Anomalies
	5.2 Performance Benchmarking for Optimizations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

