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Abstract—Static Program Analysis (SPA) has long been es-
tablished as an important technique for gaining insights into
software systems. Over the last years, analysis designers increas-
ingly produced analyses that are compositional, collaborative, or
incremental in nature - thus relying on some form of existing
results to increase performance or even precision. However,
systematic result reuse is still rare in this field even though
the analyzed software is mainly composed of reusable software
components.

For this work, we study 40 state-of-the-art SPA implementa-
tions and find that there is a tremendous potential for reusing
analysis results. We attribute this to the fact that there is no
systematic process in place for persisting and sharing analysis
results and propose such a process here to fill this gap. In this
paper, we present SPARRI, a prototype implementation providing
an HTTP API to publish, search, and reuse SPA results. Our
evaluation shows that reusing existing results with SPARRI can
improve analysis performance by up to 92%. Furthermore, we
see potential in applying it to other research areas like empirical
software studies, benchmark creation, and artifact evaluation.

Index Terms—Static Program Analysis, Modular Analysis,
Result Reuse, Repository Mining

I. INTRODUCTION

The practice of reusing existing software artifacts has been
shown to aid overall software quality and increase productiv-
ity [1]. Popular software package repositories like Maven Cen-
tral host millions of packages [2], which are openly accessible
to anyone and used by thousands of software developers every
day.

Despite its apparent popularity, software reuse also comes
with some distinct disadvantages. Recent incidents like
Log4Shell [3], as well as the intentional compromise of
colors.js and node-ipc underline the enormous impact that a
single flawed software artifact may have on its ecosystem.

In each of these cases, thousands of software packages
and projects became either vulnerable or stopped working
altogether. As a result of this growing impact of third-party
software, researchers have turned their attention to analyzing
the usage [4], quality [5], and security of such artifacts [6].

Such inspections are often implemented via Static Program
Analysis (SPA), which enables researchers to soundly over-
approximate the runtime behavior and to compute properties
of a software system without executing its code. Analyses
are used to investigate the propagation of vulnerabilities [7],

[8], to prove the absence of certain types of bugs [9]–[11],
as well as to quantify the quality of a software package via
Software Quality Metrics [12]–[14]. Their results are often
used to identify vulnerable software libraries, characterize
their quality, and derive guidelines for further improvement.
Guarantees that are proven via static program analysis can also
help in proving the correctness of software.

As a result of those heterogeneous aims, static analyses
exist in a variety of different configurations. Those may differ
in their purpose, the properties being computed, their type
of result, the framework used for implementation, and the
target language of the programs being analyzed. Historically, a
common factor has been that the final results of static analysis
are after being interpreted in their respective domain, either
discarded or archived. Consequently, sharing and reusing exist-
ing software analysis results, much like reusing software itself,
requires a dedicated process and adequate tooling, which do
not exist today.

However, some analyses would in fact strongly benefit
from reusing existing results, both in terms of the analysis
runtime and memory consumption. An example of this is
the use of callgraphs. Callgraphs are the foundation for a
number of other analyses, including dataflow analyses, ab-
stract interpretation, or reachability analyses. Furthermore, the
construction of whole-program callgraphs by combining the
callgraphs of individual libraries has been shown to improve
performance [15], [16]. Another trend supporting this claim
is the emergence of incremental [17]–[20] and demand-driven
analyses [21], which reuse results of previous runs or employ
lazy computations to optimize performance.

Despite those advantages, the structured reuse of analysis
results is a complex problem that we found did not receive
much attention in the research community to this date. We
hypothesize that this is mainly because of two reasons:

• Analyses use different, often domain-specific data for-
mats to output results. While standardized formats like
SARIF [22] exist, they do not sufficiently capture every
aspect of static program analysis in general. For SARIF,
we do not observe widespread adoption in state-of-the-art
analysis implementations from the research community.

• There is no common platform for sharing or reusing static
analysis results, so reuse would require manual search and



evaluation.

Our goal in this paper is to address this issue and provide
researchers with means to build atop existing SPA results
or share their results with others. To this end, we make the
following contributions:

• We inspected 40 analysis implementations and found that
38% do not persist their results at all, and for another
50% the authors do not provide any information on how
results are stored.

• We propose a novel system for computing, publishing,
and reusing the results of SPA. It adopts a Blackboard
Architecture, which is inspired by existing analysis frame-
works like OPAL [23], but lifted to the scale of software
component ecosystems.

• We implemented this system (named SPARRI) based on
Scala and provide a RESTful Web-API for accessing
results.

• We evaluated compositional analyses using SPARRI and
found that our approach can be up to 92% faster than
whole-program analyses. We also show that SPARRI can
help researchers conduct empirical studies on software
and share their results.

II. STATE OF THE ART

In this section, we systematically analyze the current state-
of-the-art in applications of static program analysis. Our
goal is to understand what results are produced, and how
researchers deal with (potential) reuse of such results. We aim
to answer the following research questions (RQs):

• What results are produced by SPA applications? (RQ1.1)
• How are results of SPA applications structured? (RQ1.2)
• By what means are SPA results persisted? (RQ1.3)
• To what extent are SPA results reused? (RQ1.4)

To answer those questions, we investigate a total of 40
publications on SPA applications and employ an open card-
sorting approach [24] to identify relevant categories.

We build a corpus of relevant publications following the
guidelines for Structured Literature Reviews proposed by
Stapić et al. [25]. In that, we define four Search Terms (T1 -
T4) that we use to query the interfaces of the ACM Digital
Library, IEEExplore and ScienceDirect, which are relevant
indexing services for scientific publications [26]. Furthermore,
we define Inclusion Criteria (I1 - I8) and a Quality Checklist
(Q1 - Q4). Most notably, we restrict ourselves to publications
of the last ten years (I8). All terms and criteria are presented
in detail in our artifact1.

For each RQ, we manually assign text labels to every
publication in our corpus. We then group similar labels into
categories and assign category names. Finally, we use the size
of those categories (i.e. the number of publications) to judge
their relevance and answer our RQs.

1In case of acceptance we will publish a research artifact via Zenodo. For
now, we provide an anonymized version:
https://anonymous.4open.science/r/sparri-artifact-3C98

A. Results
For each RQ we highlight the categories obtained via card-

sorting and their prevalence in the set of publications. An
overview of those results is presented in Table I.

1) RQ1.1: What results are produced?: For this RQ, we
investigate the semantic meaning of SPA results and their
distribution in our dataset. The most prevalent category of
results semantics is Control- and Dataflow (C1.2) information,
which is attributed to 40% of all publications. Here we observe
that Control-Flow Graphs (CFGs) are often enriched with
additional dataflow information, which is why the category
spans both. In particular, edges are often annotated [27] or
nodes inserted [28]. Other approaches represent dataflow with
nodes for program states and transitions between them [9],
[10], [21].

23% of all publications belong to category C1.1, which
describes so-called Summary-Based dataflows. Here we found
SPA applications computing summarized dataflows for certain
structural entities like methods or functions. This is often done
to compose local analysis results into global ones:

”The procedural transfer function [...] summarizes its
points-to side-effects between its formal-in parameters and
formal-out parameters [...]. When analyzing a call site, the

analysis reasons [...] by applying its procedural transfer
function [...].” [11]

Most applications summarize per-method (or function) [11],
[29]–[34], but depending on the domain, other granularities
like per-thread [20] or per-intent (Android) [35] are possible.

Other categories are Points-To Information (C1.3) and Secu-
rity and Safety (C1.4), the latter containing analyses focused
on system calls [36], fault tolerance [37], general program
termination [38] and more. Least prevalent, we find two
publications concerned with emitting Program- and Bytecode
(C1.5) [39], [40], as well as two publications calculating
Descriptive Characteristics (C1.6) like metrics values [13] and
roles of program variables [12].

2) RQ1.2: How are results structured?: We now present
our results on the general formal structure of SPA results.
The most popular structures we observed are Graph Structures
(C2.1) with 35% of all publications, and Maps (C2.5) with
28%. For C2.1 we see that oftentimes graphs are used to
describe control- and dataflows [10], [17], [21], [27], [28],
[41]–[44], optionally using edge labels, node labels or parti-
tions to further annotate information. We also observe trees
being used to summarize control flow [31]. As to C2.5, we
report that program variables are predominantly used as keys
for maps, often mapping to sets of allocation sites [18], [33],
[45]–[47], but also to access permissions and mutability in-
formation [48]–[50]. Maps are also used to associate program
locations to abstract states [51], [52].

Less prominently, authors also use Traces (C2.2) to report
taint- and dataflows, general Function Summaries (C2.4) and
plain Algebraic Structures (C2.3), including vectors [12],
Hoare Triples [38], and numbers [13]. Four publications do
not fit into any of the previous categories (C2.6), which use



TABLE I
CATEGORIES RESULTING FROM OPEN CARD-SORTING WITH THEIR RESPECTIVE NUMBER OF PUBLICATIONS CONTAINED

RQ1: Semantics of SPA Results RQ2: Structure of SPA Results RQ3: Technical Storage Solution RQ4: Usage of Existing Results
Category Papers Category Papers Category Papers Category Papers
C1.1 Summary-Based Dataflow 23% (09) C2.1 Graph Structures 35% (14) C3.1 In-Memory Only 37% (15) C4.1 Summaries 18% (07)
C1.2 Control- and Dataflow 40% (16) C2.2 Traces 13% (05) C3.2 File-Based 10% (04) C4.2 Points-To Data 10% (04)
C1.3 Points-To Information 15% (06) C2.3 Algebraic Structures 7% (03) C3.3 Structured 3% (01) C4.3 Execution Paths 7% (03)
C1.4 Security and Safety 12% (05) C2.4 Function Summaries 7% (03) C3.4 No Information 50% (20) C4.4 Semantic Graphs 13% (05)
C1.5 Program- and Bytecode 5% (02) C2.5 Maps 28% (11) C4.5 No Usage 42% (17)
C1.6 Descriptive Characteristics 5% (02) C2.6 Misc 10% (04) C4.6 Previous Results 7% (03)

C4.7 Metric Values 3% (01)

structures that are either very specific (Bytecode [40], Sandbox
Whitelist Policies [36], Java Program Slices [39]), or formats
that are not reported at all [53].

3) RQ1.3: By what means are results persisted?: Through-
out the entire set of publications, we find that technical details
of SPA result storage is an aspect rarely discussed. For 50%
there is no information (C3.4) on this topic, another 37% do
not persist the results of SPA at all, instead keeping them in-
memory only (C3.1). 10% of publications used one [9], [36],
[40] or multiple [29] files (C3.2) for storing SPA results:

”The partial summaries [...] are stored in a .res file on the
machine where the analysis is performed. This .res file needs

to be transferred to the target machine [...].” [29]

We found that one publication uses a structured storage solu-
tion (C3.3), namely a database, for storing SPA results [12].

4) RQ1.4: To what extent are results reused?: We investi-
gate if and how analyses make use of existing results. While
for this aspect we derive the largest number of categories,
many analyses still do not incorporate any existing results at all
(C4.5). However, those analyses often compute generic inputs
like points-to information [44], [45], [54] or callgraphs [11],
[46] themselves in every analysis run. In fact, some authors
explicitly acknowledge the fact that such computations are
indeed a time-consuming necessity:

”[...] to decompose the expensive cost of the exhaustive
points-to analysis, we [...]. The points-to analysis is

performed along with a thread call graph in a bottom-up
fashion [...].” [11]

Other publications go one step further and enable the reuse of
points-to data (C4.2) [19], [27], [47], [55] or semantic graphs
(C4.4) [17], [18], [21], [28], [49] like callgraphs. A similar
observation can be made for categories C4.1 (Summaries) and
C4.6 (Previous Results), where external or previous results are
reused to speed up analyses.

The latter includes domain-specific results like termination-
certified modules [38], program modules with associated
dependencies [20], or specific abstract states from previous
iterations [52].

10% of all publications consume program slices or traces
(C4.3) [39], [53], [56], while one publication consumes exter-
nally computed metric values for individual program compo-
nents in order to aggregate a whole-system metric value [13].

We note that there are only two analysis implementa-
tions [10], [13] that reuse results produced by other external
analyses. All other reuse happens for data produced in the
context of the same publication, i.e. by preprocessing steps or
via incremental computations.

B. Discussion

Our analysis of state-of-the-art SPA implementations high-
lights some interesting aspects regarding the handling of
results.

First, we note that 55% of SPA results are of a very
general nature (C1.2, C1.3) and potentially applicable to many
different research contexts. Adding to that, the structure of
SPA results is often well-defined and easy to process, with
graphs (C2.1), general algebraic structures (C2.3) and maps
(C2.5) making up 70% of all publications.

Observation 1: Many SPA results are of general nature
(55%) and have a well-defined structure (70%).

Furthermore, we observe that authors seem to understand
the benefits of SPA result reuse, with 58% of publications
reusing some form of result. Even for analyses without reuse,
we see authors re-implementing common functionality to
obtain points-to sets or callgraphs, although sophisticated and
well-tested implementations exist for those purposes. How-
ever, reuse almost exclusively happens within the context of
a single publication, we notice that only two publications
reuse externally computed results. As we observed many
SPA implementations producing generally applicable results of
straightforward structures (Observation 1), we hypothesize that
this fact is due to a lack in supply: There is no straightforward
way to reuse existing results for SPA in a structured manner.

Observation 2: Most analyses (58%) consume some pre-
computed results, but rarely from external sources (5%).

Contrary to the potential for reuse we identified earlier, we
find that a large majority of publications are not concerned
with persisting analysis results longer than a single execution.
In fact, we see a majority of publications that either do not
persist their results (37%) or do not describe the handling of
results altogether (50%).

The ones that do often use files to store data, without
providing any information about the concrete data format used
for serialization. This implies that the reuse of those results is
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Fig. 1. Example for an SPA result reuse process

tedious for others, as it requires manual reverse-engineering
of the data format used.

Observation 3: Only 13% of publications mention persis-
tent storage of results, but even those cases do not provide
further information on the concrete data format.

Overall, we made what seem to be contradictory observa-
tions: There is a sufficient supply of generally-applicable SPA
analysis results, as well as an apparent benefit to reusing them.
However, researchers rarely reuse external SPA results and do
not discuss persisting results.

We argue that this is mainly because no structured process
for SPA result reuse exists. To address the problem, in the
following, we propose such a process based on our findings.

III. DESIGN

A process for reusing SPA results must define ways to
publish results to a persistent storage and to provide structured
access to them. Furthermore, in order to foster reliability and
traceability, process participants must be able to judge the
context and quality of results. Finally, to design a process
that is relevant to current SPA researchers, all major result
structures and data formats that we observed in state-of-the-
art SPA implementations must be supported.

In this section, we propose a process that implements
the above-mentioned goals. Figure 1 exemplifies how this
process looks like for the example of whole-program callgraph
construction. We, first, present a data model that captures the
most prominent SPA result formats, followed by an in-depth
description of the entire process.

A. Result Format Definition

Providing structured access to SPA results requires a data
model defining the set of supported result formats. There are
two conflicting goals for such a model: It must be broad in a
sense that it should cover all major result structures observed
in Section II, but also not allow for arbitrary structures, so
that result semantics are preserved and clearly communicated
to potential consumers.

Based on our findings from Table I, we define a data
model for SPA result formats. The model incorporates Graph
Structures (C2.1), Maps (C2.5), Objects and Lists. The latter
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Fig. 2. Data model for SPA result formats

is used to model vectors (covering C2.3) as well as Traces
(C2.2), which can be seen as lists of strings. In total, the
model covers 83% of all structures we observed in state-of-
the-art implementations.

However, we do not want our process to work on maps,
graphs, objects, and lists of arbitrary data, as this would
greatly reduce expressivity and usability. Instead, our data
model also defines the format of basic result elements. We
observe that results often reference concrete software entities:
Points-to sets refer to Program Statements, callgraphs refer to
Methods or Classes, and metrics refer to entire Programs or
Libraries. Consequently, we introduce the notion of Software
Entities to our data model.

A UML representation of our model is given in Fig-
ure 2. It defines the format of an analysis result to be
either a ListResultFormat, a GraphResultFormat,
a MapResultFormat or an ObjectResultFormat. The
basic result elements may be formatted as references to soft-
ware entities (SoftwareEntityReference), basic values
like StringFormat and NumberFormat, or any cascaded
analysis results. Every format definition can be annotated
with optional descriptions for contained formats so that the
semantics of elements are preserved.

This model enables process participants to publish Maps
where the keys are Strings (e.g. variable names) and the
values are Lists of references to concrete software statements
(e.g. potential allocation sites), thus creating a very common
format for points-to information. By distinguishing references
to software entities from plain strings, this model enables
bidirectional links that greatly improve the querying of results.

B. Process

Besides software entities and SPA results themselves, our
reuse process involves additional entities that are introduced
in Figure 3.

The diagram shows the definition of a SoftwareEntity,
which always belongs to a single repository and program-
ming language. Also, those entities are of a certain kind
(SoftwareEntityKind), and may have any number of
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Child-Entities, which typically have a more precise kind than
their parents.

An AnalysisResult is produced as a result of an
AnalysisRun. Because an analysis run may for example
be executed on a given Program, but produce results for each
individual Method, we distinguish between entities that are
input to an analysis run, and those for which the corresponding
analysis result is valid. Finally, an AnalysisRun is the
concrete execution of an Analysis. Every analysis has a
fixed result format, for which detailed definitions have already
been given in Figure 2. As individual analysis implementa-
tions evolve over time, they may also be versioned via the
Version attribute.

A number of attributes in Figure 3 are defined so that
process participants can judge the context and quality of SPA
results, and enhance the reproducibility of results:

• Every analysis has a Description, information about
the technology it is built upon (BuiltOn) as well as a
reference to the process participant registering it.

• Analysis runs provide information about the concrete
configuration that was used to instantiate the analysis,
as well as the logs produced during execution.

• Results, analysis runs or entire analyses may be revoked if
the corresponding implementation or configuration turns
out to be incorrect. Revoking an analysis run automati-
cally revokes all results associated with it, the same is
true for analyses and their analysis runs.

Furthermore, the fact that analyses (and results transitively)
are attributed to a user acts as an incentive for publishing
results. It allows process participants to reference their SPA
results online and encourages reuse in other research projects.

Based on our definitions we identify four necessary process
steps, which are described in the following sections.

1) Acquiring Software Entity Information: Since analysis
results are linked to software entities in multiple ways, one
first needs to gather information about those entities before
any results can be published. This can be seen as an index-
ing phase, where information about target programs, classes,
methods, and statements is acquired and persistently stored.
This information may either be computed ad-hoc for a given
set of software components (e.g., all contents of a repository),
or on-demand whenever an analysis run is about to process
software.

Maven Central

AnalysisExecutor

EntityMiner

AnalysisQueue

MiningQueue

WebAPI

Database

R / W

Dequeue Enqueue

Enqueue

Analyses

Results

R

Dequeue

Fig. 4. Components of our prototype implementation

2) Registering Analyses: When process participants want
to publish results, they first need to register corresponding
analysis information in a global registry. As mentioned before,
this is necessary so that other participants can judge the context
in which subsequent results have been generated, as well as
potential limitations or threats to validity. This also defines the
format of results that are produced by the analysis.

3) Producing Results: Once entity information and analysis
data are present, SPA results can be published and stored in a
database. As seen in Figure 3, this also includes information
about the analysis run in which the results have been produced.

4) Consuming Results: All process participants may re-
trieve information on SPA results or software entities from
the database. The definitions in Figure 3 enable us to query
results in different ways: Based on their respective analysis,
the analysis run with created them, or based on the entities that
the results are valid for. This makes it possible to for example
retrieve all SPA results associated with program methods that
have a specific name.

IV. IMPLEMENTATION

We implement SPARRI, a prototype for our design presented
in Section III using Scala. Our implementation is available on
GitHub2. For this prototype, we restrict ourselves to process-
ing software written for the JVM and published via Maven
Central, although the process and data model work with
arbitrary software artifacts and repositories. We further add the
concept of built-in analyses to SPARRI. This allows for certain
types of results (including callgraphs and dependencies) to be
calculated on-demand without having to implement an analysis
first.

Figure 4 provides an UML component diagram highlighting
the architecture of SPARRI. Most notably, we employ Message
Queues to buffer different kinds of system tasks and decouple
components from each other.

The interface for interacting with our system prototype is
realized in the WebAPI component. It hosts a RESTful HTTP

2For review purposes we provide an anonymized version here:
https://anonymous.4open.science/r/sparri-artifact-3C98



API for accessing all system functionalities. Specifically, the
API can be used for:

• Registering Analyses: Users can register information for
new analyses at the API. All data is directly written to the
underlying database. This implements a mandatory step
of our reuse process, as described in Section III-B2.

• Publishing and Accessing Results: Analysis results for
a given set of software entities can be posted to and
retrieved from the WebAPI component via the JSON
data format. Similar to registering analyses, this is imple-
mented as a direct database write or read, respectively.

• Triggering Analysis Runs: Our prototype provides a
number of built-in analyses, which can be triggered for
arbitrary input entities via the WebAPI. If those entities
are not yet known to the system, a MiningTask is
created and inserted into the MiningQueue. If the entities
are known, a AnalysisTask is created and inserted
into the AnalysisQueue. Both queue inserts are done with
high priority, as they are the result of a user request
and should therefore be prioritized over automatically
generated background tasks.

The EntityMiner processes MiningTasks from the cor-
responding queue and collects data on the requested entities.
This is done by querying the HTTP interface of Maven Cen-
tral. For each Maven program, we collect data on packages,
classes, methods, and statements, which we then store in the
database. To do this, we download the corresponding JAR file,
process it using the OPAL framework [23] and then discard it
afterward. Optionally, the MiningTask can specify a built-
in analysis to trigger once mining is completed. In this case,
upon completion, the EntityMiner queues a corresponding
AnalysisTask at the AnalysisQueue.
AnalysisTasks are consumed by the AnalysisExecutor

component. This component is responsible for executing built-
in analyses on-demand. Before an analysis is executed, the
component validates a number of prerequisites. In particular,
it checks that the supplied input entities are of the correct
kind, that the exact same run has not been executed before
(otherwise it would be redundant), and that data on the input
entities has been mined beforehand. If the last check fails, a
corresponding MiningTask is queued, thus effectively post-
poning analysis execution until the required data is present.
Currently, SPARRI comprises three built-in analyses:

• Dependencies: An analysis implementation that extracts
all direct dependencies for entities of kind Program,
i.e. Maven software artifacts. It can be configured to also
extract transitive dependencies.

• Change Frequency: For a given entity of kind Library
(i.e. G-A-Tuples in Maven), this analysis calculates the
change frequency of all classes contained in any library
release. The result is a mapping of Fully-Qualified-
Classnames to tuples (nδ, n), where nδ represents the
number of unique binary occurrences of the class, and n
the total number of occurrences.

• Callgraphs This analysis creates partial callgraphs for

entities of kind Program. To do so, it downloads JAR
files from Maven Central, loads them in the OPAL
analysis framework, and builds a callgraph using the XTA
construction algorithm. The analysis can be configured
to use different construction algorithms (e.g., CHA, RTA
or others) and can optionally also load implementations
of the Java Runtime Environment when building the
callgraph.

Once execution succeeded, the component creates correspond-
ing objects of type AnalysisResult and AnalysisRun (see Fig-
ure 3) in the database.

A. Result Contextualization

SPARRI allows analysis result formats to be annotated with
textual descriptions for each individual part of the specifica-
tion. This can help in understanding the output of an analysis
and putting it in the right context before reusing results. To
support this, our implementation features an API endpoint that
generates a full-text description of result formats based on
these individual annotations. Listing 1 shows the description
generated for the result format of our built-in Dependency
Analysis.

A List of elements that represent Dependencies (GAV-
Triple) for this program. The elements are
formatted as:

An object containing 2 different properties:
A property with name identifier, that contains The

GAV-Triple identifying a dependency, i.e. a
required Maven library. The property is
formatted as:

An object containing 3 different properties:
A property with name groupId. The property is

formatted as: A text value
A property with name artifactId. The property is

formatted as: A text value
A property with name version. The property is

formatted as: A text value
A property with name scope, that contains The

Maven scope of this dependency. The property
is formatted as: A text value

Listing 1. Generated description for Maven dependency result format

B. Foundations

For some aspects of SPARRI we rely on existing tools and
frameworks. In particular, we use RabbitMQ for implementing
Message Queues with priorities, OPAL for inspecting bytecode
and for executing analyses, as well as Maven Archeologist3

and Jeka4 for resolving dependencies. Furthermore, both the
EntityMiner and AnalysisExecutor make use of
Akka Streams5 for the continuous stream processing of tasks,
while the WebAPI makes use of Akka HTTP6 to host its
HTTP server. Our database is implemented using a predefined
PostgreSQL Docker image7. All individual components are
deployed using Docker as well.

3github.com/square/maven-archeologist
4github.com/jeka-dev/jeka
5github.com/akka/akka
6github.com/akka/akka-http
7hub.docker.com/ /postgres/



V. EVALUATION

To evaluate our work, we pose the following research
questions:

• Can compositional analysis with SPARRI provide perfor-
mance benefits over whole-program analysis? (RQ2.1)

• Does an infrastructure like SPARRI aid in conducting
large-scale empirical research on software? (RQ2.2)

• Is our data model for result formats flexible enough to
support real-world format definitions? (RQ2.3)

In the following sections, we answer those questions in detail,
each time presenting the respective methodology and results.
All experiments have been conducted on a server with an Intel
Xeon E5-2650 quad-core CPU and 34GB of RAM.

A. RQ2.1: Performance Benefits

We ask whether building compositional static analyses that
rely on partial or intermediate results can result in performance
benefits when compared to ”traditional” whole-program anal-
ysis. Recent research indicates that this is indeed the case
not only in theory but in practice [15], [57], with modular
constructions being up to 95% faster when partial results are
available [57].

To verify these results for our own design and prototype,
we compare execution times for whole-program analyses with
those of compositional ones for two problems of different com-
plexity. Each time, we record the average execution time of
whole-program analysis runs, as well as the initial and amor-
tized runtime for compositional analyses. We then analyze if
and under which assumptions a compositional implementation
yields benefits.

For the first analysis, we chose the relatively simple problem
domain of calculating the transitive closure of all dependencies
for a given program. As a second problem domain, we choose
callgraph construction, as it is a very popular example of static
program analysis.

1) Transitive Dependencies: We implement two analyses
that both calculate the set of all transitive dependencies for a
given program identifier (GAV-Triple) in Maven Central:

• The SimpleTransitiveDependencyAnalysis is
a straightforward whole-program analysis that for a given
program collects all transitive dependencies using a li-
brary called Jeka8, which parses all pom.xml files along
the dependency tree.

• The ReusedBasedTransitiveDependencyAna-
lysis relies on SPARRI’s API to retrieve partial results
- i.e. the set of all direct dependencies - for every program
along the dependency tree.

When running our compositional analysis implementation, we
assume that all required partial results have in fact been pre-
computed. To ensure a fair comparison, each evaluation run
starts with an empty database. We then trigger a computation
of all required partial results and record the time it takes
SPARRI to make all results available. This initial computation
time tR,0 is crucial for computing amortized execution times.

8https://github.com/jeka-dev/jeka

TABLE II
EXECUTION TIMES FOR DEPENDENCY COMPUTATIONS

#DEPS tWP [ms] tR,0 [ms] tR [ms] tR [ms] NB

P1 6 1318

29120

97 494 4
P2 5 1001 86 417 4
P3 1 324 31 97 3
P4 32 5917 439 2557 4
All 44 8561 29120 654 3566 4

We evaluate the performance of both analysis implementa-
tions on a small benchmark of four programs listed on Maven
Central. To create the benchmark, we started at popular Maven
libraries9 and randomly searched through the list of transitive
dependees, to find programs with different dependency counts.
The rationale behind this is that the number of dependencies
corresponds to the number of partial results that need to be
created and consumed, thus allowing us to judge whether
this affects the overall performance. For each program, both
analyses are repeated ten times. Each time, we check that the
compositional and the whole-program approach yield the same
results.

Table II reports our key results, namely the average
whole-program execution time tWP , the initial time for pre-
computations tR,0 and average execution time for the compo-
sitional analysis tR. Finally, tR captures the amortized runtime
for ten repetitions of the compositional analysis, and NB the
point of Break-Even, i.e. the number of runs after which the
compositional approach is faster (on average) than the whole-
program analysis.

We can see that for all individual programs, as well as
overall, the compositional approach is faster than the whole-
program computations, with raw execution times being re-
duced by over 92%. However, the compositional analysis
requires initial computations that took a total of 29 seconds.
Taking this into account, it takes four runs (NB) for the
compositional analysis to be faster - on average. After ten
runs (tR), the runtime for compositional analyses is already
reduced by over 58% compared to whole-program analyses.

2) Callgraphs: We implement two different approaches
to calculating callgraphs using the Rapid Type Analy-
sis (RTA) algorithm. DirectCallgraphAnalysis is a
whole-program analysis that leverages bytecode parsing and
the implementation of RTA from the OPAL framework [23].
To do so, it first downloads JAR files for all dependencies.
In contrast, the ReuseBasedCallgraphAnalysis uses
partial callgraphs registered at SPARRI and stitches them
together.

As before, we start with an empty database and record the
initial computation time for partial results tR,0. Furthermore,
we capture the execution times for the whole-program ap-
proach (tWP ) and the compositional analysis (tR), each time
averaging over five runs. We execute our analysis on three
programs with a varying number of dependencies.

9https://mvnrepository.com/open-source



TABLE III
EXECUTION TIMES FOR CALLGRAPH COMPUTATIONS

#DEPS tWP [ms] tR,0 [ms] tR [ms] tR [ms] NB

P1 5 9528
27283

3661 4479 2
P2 12 5861 3160 4933 7
P3 0 245 31 167 7
All 17 15634 27283 6851 9579 4

Table III presents the key results for the callgraph per-
formance evaluation. Similar to our observations for depen-
dencies, we see that the raw execution times are smaller for
the compositional approach, on average they are reduced by
56%. Depending on the size of the program’s dependency set,
break-even is achieved after two to seven runs, with initial
computations taking over 27 seconds in total.

B. RQ2.2: Aid to Empirical Research

Since our design essentially provides a large-scale index for
arbitrary analysis results with built-in facilities to reason about
libraries, programs, and other entities, we see an opportunity
for using SPARRI to simplify large-scale empirical studies
on software. To validate this claim, we show how existing
empirical studies on Java software can be replicated using
SPARRI, without having to collect any software artifacts or
process any bytecode.

In the following, we present three empirical studies on
software artifacts by other researchers and explain how we
re-implemented their respective methodologies using our pro-
totype implementation. Our implementations for those studies
can be found in our GitHub repository.

1) API Breaking Change Analysis: In their 2016 study
titled ”Semantic versioning and impact of breaking changes
in the Maven repository” [58], Raemaekers et al. investigate
what kind of changes are introduced in new releases of a
software component and how they are related to semantic
versioning. The study uses a benchmark of over 100,000 JAR
files to collect change information, which is computed on
JVM bytecode using a tool called Clirr. It detects a total of
20 breaking change types, 13 of which can immediately be
computed using the information collected by SPARRI:

Method removed (MR), Class removed (MR), Parameter Type
Changed (PTC), Return Type Changed (MRC), Interface
Removed (IR), Number of Arguments Changed (NPC),

Method added to Interface (MAI), Removed from
Superclasses, Method Accessibility Decreased, Method now
Final, Abstract Method Added, Added final Modifier, Added

abstract Modifier

The remaining seven change types operate on Fields, which
are currently not reflected in our prototype implementation.
However, adding them is a straightforward operation within
the boundaries of our current data model (cf. Figure 3).

To validate our claim, we implement a
BreakingChangeAnalysis in SPARRI. Given a
Maven library identifier (GA-Tuple) and two releases of that
library, it computes the number of occurrences for each of
the thirteen change types using only SPARRI’s API. We note

that in this case, there is no need to pre-compute any partial
results, as all computations can be done strictly on the entity
structure of the two programs.

2) Dependency Graph Generation: In 2019, Benelallam
et al. introduce the Maven Miner [59], a tool that builds
a dependency graph for the entirety of Maven Central. It
iterates over all programs (GAV-Triples), each time extracting
dependencies from the respective pom.xml files, and stores
the resulting graph in a Neo4j graph database for subsequent
analyses.

We claim that the same result can be achieved using
SPARRI, without having to explicitly download and parse any
files. This requires direct dependencies - a type of partial result
for which we provide built-in analyses - to be pre-computed
for every artifact in Maven Central.

To verify this claim, we implement the
DependencyGraphGenerator. It builds a full
dependency graph for Maven Central and writes it to a
dedicated Neo4j Graph Database. As in the original study,
nodes are GAV-Triples and edges represent dependencies.
This is done by only querying the SPARRI API, no calls
to Maven Central itself are necessary. The following HTTP
request is used to retrieve all Maven programs (GAV-Triples):

GET /entities?kind=Program&language=Java

For each such program, the direct dependencies are retrieved
by invoking the following HTTP request:

GET /entities/<GAV>/results?analysis=mvn-
dependencies:1.0.0

The required information, namely the dependency GAVs,
can be directly extracted from the resulting JSON re-
sponse. Since no XML parsing and dependency res-
olution is required, the overall implementation of the
DependencyGraphGenerator requires less than 210
lines of code.

3) Library Evolution Metrics: Constantinou and Stamelos
developed a set of software metrics that describe the stability
and evolution of an evolving software system [60]. They
do this by computing numeric values - named Stability and
Evolution - based on two subsequent releases of a library.
The authors evaluate their metrics by conducting an empirical
study on five real-world software systems with a total of 220
versions.

The metrics are computed using a simplified structural
model of the target software. Specifically, all metrics are
computed using only the sets of packages and classes, as
well as usage relations between classes. As specified by the
study authors, any direct mention of one class by another is
considered a usage, including subtyping, invocations, and field
accesses.

We note that SPARRI would also allow us to compute
potential usages based on an actual callgraph, instead of
relying on the declared type of invocations and field accesses.
This would merely require us to compute partial callgraphs
beforehand, as illustrated for our performance evaluations in



Fig. 5. Rendering of a JIPDA flow graph [61]

Section V-A. However, since this was not done in the original
study, we stick to structurally derived usages here.

def calculateEvolutionMetrics(ga: String,v1: String,
v2: String): Try[EvolutionMetricsReport]

Listing 2. Interface of the EvolutionAnalyzer

We implement a Scala class called EvolutionAnalyzer
that computes the Stability and Evolution metrics for two
releases of a given Maven library. Listing 2 shows its in-
terface, requiring only a GA-Tuple to identify the library
and two subsequent versions v1 and v2. For both resulting
GAV-Triples, we retrieve the entire program entity structure
(packages, classes, methods, and instructions) using a single
call to the SPARRI API: GET /entities/<GAV> Based on
this data, we compute the sets of packages (Pi and Pi+1) and
usage relations (RELi ∈ Pi×Pi and RELi+1 ∈ Pi+1×Pi+1)
as specified by Constantinou and Stamelos. In the final step,
we use those sets to compute the metric values for Stability
and Evolution, returning them in a container class called
EvolutionMetricsReport.

C. RQ2.3: Flexible Data Model

Figure 2 presented the data model we propose for describing
the formats of analysis results. To evaluate its flexibility,
we ask whether this model can be used in real-world SPA
applications and, therefore, is an appropriate choice for our
use case. We evaluate this question by providing example
mappings of real-world analysis result formats to our own
format. The code-based format definitions can be found in
our artifact.

First, we investigate JIPDA flow graphs used by Nicolay
et al. to detect vulnerabilities in JavaScript applications [10].
Such graphs are exported as a dot graph, an example of which
can be seen in Figure 5.

As seen here, graph nodes contain labels (and additionally
tooltips), as well as a unique integer id. Edges are defined
as tuples of source- and target node ids, without additional
properties. Additionally, the graph may have a name and node
styling properties. Figure 6 shows how this format is replicated
using our data model (as seen in Figure 2).

A similar mapping (also relying on the
GraphResultFormat) can be used to describe Static
Summary Trees as used by Chen et al. [31] for their Thread
Escape Analysis. This only requires an additional node

propertyFormat
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propertyFormat

propertyproperty
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:NamedPropertyFormat
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Fig. 6. Representing JIPDA flow graphs in our prototype

property called Type, in order to differentiate node types
like Read, Write, Controlflow, and others.

The auxiliary points-to sets used by Hardekopf and Lin to
perform flow-sensitive pointer analysis [47] can be represented
in our format using Maps where keys are variable names
(strings) and values are sets of program locations. Those
locations can be represented as either text (e.g. statement
content), numbers (program counters), or composite objects
containing additional information.

VI. DISCUSSION

Our study on state-of-the-art applications of SPA showed
that reusing existing or pre-computed results is becoming
increasingly popular among analysis developers. However, this
reuse happens almost exclusively in the context of one research
project or application, not across projects or domains. We
argue that many analyses (and empirical studies) would benefit
from persisting, reusing, and sharing such SPA results, but as
of now lack the means to do so. Thus we presented SPARRI,
a prototype implementation of our result reuse process.

Our evaluation showed that compositional static analyses
based on SPARRI can in fact yield performance benefits com-
pared to a whole-program approach. This is in line with the
findings of other researchers on reuse in specific domains [15],
[57]. We see that the initial overhead of computing partial
results can often be compensated after only four analysis
runs, in one case even after two runs. Amortized execution
times for ten runs can be less than half of those for whole-
program analyses. Given that SPARRI aims to persist partial
results indefinitely for an entire repository, initial computation
times can almost be neglected in the long run, which would
yield a net reduction in execution time of almost 90% for
dependencies, and 56% for callgraphs.

However, it is important to note that our evaluation only
confirms that speedups are possible, we cannot assume that
this generalizes to all programs or other analysis domains
(aside from dependency analysis and callgraphs). Some pro-
gram analyses are inherently non-compositional, and thus can
not be expected to benefit from persisting and reusing results.

We further find that a system like SPARRI vastly simplifies
empirical studies on software. Our evaluation illustrated that
it is possible to replicate existing studies by relying only on



SPARRI’s HTTP API, without any frameworks for processing
JVM bytecode or accessing Maven Central. This common
abstraction could be especially useful for comparative studies
between different repositories and programming languages,
which Decan et al. [62] identified as necessary for understand-
ing structural differences in repositories.

The result format we propose (by construction) covers 83%
of the top-level data structures we saw in state-of-the-art
implementations. Our evaluation showed that it can be used
to capture multiple result formats from real-world SPA imple-
mentations. We aim to improve result format comprehension
by allowing descriptive annotations, which consumers can
use to better understand the syntax and semantics of existing
results (cf. Listing 1).

There are additional benefits to indexing and reusing anal-
ysis results, which we think will be especially beneficial to
the software engineering research community. A system like
SPARRI can be used to share results in the context of artifact
evaluations for research artifacts. In particular, this would
allow reviewers to access results and judge their quality while
allowing researchers to understand how and why their results
are used in other research contexts. Additionally, a large-scale
index of code entities (like SPARRI) facilitates the creation of
domain-specific software benchmarks, where researchers can
query and filter for distinct features that they would like to be
represented in their benchmark.

With our work, we have shown that persisting and reusing
the results of static program analyses - like the reuse of
software itself - can yield benefits in multiple dimensions.
This includes the design and implementation of new analyses,
the runtime complexity of such analyses, as well as other
research areas like empirical studies on software and artifact
evaluations. A downside to sharing results is the organizational
and developmental overhead it introduces. With SPARRI, we
provide a system that addresses those issues, thus reducing the
overhead for publishing SPA results.

A. Adopting SPARRI

Based on our evaluation results, we anticipate that SPARRI
can yield significant benefits when adopted by SPA implemen-
tations. We foresee two distinct aspects that analysis designers
may want to address:

1.) Analyses may utilize SPARRI to publish their results
and make them accessible to other analyses, researchers,
or developers. This can be done for both existing and
new analysis implementations with relatively low effort.
It requires an additional (potentially optional) post-
processing step, which converts the analysis results to
our result format and uploads them.

2.) Analyses may use existing results provided via SPARRI
to build on top of them. This is a fundamental design
choice, and can only be achieved for existing analysis
implementations if they already rely on precomputed or
partial results. In this case, a pre-processing step that
retrieves those results and converts them to the format
expected by the analysis needs to be implemented. For

new implementations, analysis designers could directly
rely on our format when consuming their inputs.

Both aspects can be adopted independently, meaning that
analyses may publish to SPARRI, consume from SPARRI, or
both at the same time. In the future, we plan to provide a client-
side API that reduces the implementation effort for converting
proprietary result formats to our format and vice versa.

B. Limitations and Threats to Validity

Internal Validity. For RQ2.2, we faithfully re-implemented
tools for empirical studies based on their publications. We did
not reproduce those studies to the original extent, as our goal
was to prove that all required input data can be provided via
SPARRI. Furthermore, SPARRI is a prototype implementation
missing features like authentication and authorization. While
implementing those features may introduce a slight overhead
in performance, we are confident that this does not influence
our observations for RQ2.1 in any significant way.

External Validity. While we showed that some analyses can
benefit from reusing results, this is by no means guaranteed
for all inputs to those analyses or other types of analysis. It
is to be expected that some non-distributive analysis problems
either cannot reuse previous results at all, or do not benefit
from doing so. On the other hand, previous research has shown
that there can be performance benefits even in non-distributive
cases [16]. We further note that studies requiring results that
cannot be provided by SPARRI’s built-in analyses can only
benefit from using our process if others provided the required
data beforehand.

VII. RELATED WORK

To the best of our knowledge, only a few publications have
dealt with the topic of reusing analysis results, none of which
provide a general approach. Therefore, we present related work
that focuses on partial aspects similar to our design.

A. Large-Scale Software Analysis

In 2021, Maj et al. presented CodeDJ, an infrastructure
for querying git repositories for content and metadata [63].
The system consists of a persistent datastore and an in-
memory database offering a Rust-based query interface. It
uses a language-agnostic data model to store information about
projects, commits, users, and metadata, as well as file contents.
CodeDJ emphasizes reproducibility by allowing queries on
older states of the data store. Similar to our work, Maj et
al. capture an extensive amount of project-specific metadata.
However, unlike SPARRI, their system does not investigate
the source code itself and thus offers no facilities to query for
entities like classes, methods, or instructions.

Dyer et al. propose Boa, a system that enables researchers to
query software projects semantically [64]. The authors provide
infrastructure to parse Java files and conduct parallel queries
on a large data set generated from SVN repositories. Similar to
SPARRI, Boa provides built-in static analyses that can extract
graph-based representations of individual Java Methods, in-
cluding control-flow graphs, program-dependence graphs, and



others [65]. However, Boa does not handle any non-graph-
based or inter-method results, and cannot be extended with
data from analyses that are not built-in by the developers.

GitHub Code Search allows users of GitHub to search for
symbol definitions in software, including class- and method-
definitions [66]. Similar to SPARRI and its indexing feature,
this enables users to conduct studies on code and built domain-
specific benchmarks based on semantic filtering criteria.

Upadhyaya and Rajan present a different approach to reduc-
ing the runtime for large-scale program analysis [67]. They
cluster programs based on their ”analysis specific similarity”
so that it is sufficient to analyze one candidate to produce
valid results for the entire cluster. The authors rely on Boa to
implement their analyses and observe speed-ups of up to 69%
compared to their baseline approach.

Pauck and Wehrheim combine existing Android taint anal-
yses into a single framework called CoDiDroid [68]. They
show that combining the respective results of those individual
analyses on-demand yields benefits in terms of precision and
scalability for a given analysis problem.

B. SARIF

The OASIS Static Analysis Results Interchange Format
(SARIF) defines a format for persisting the results of static
analysis tools that assess the quality of a program [22]. One
goal is to provide ”an overall picture of program quality” [22,
p.16] by vastly simplifying the exchange and aggregation of
results of an individual qualitative aspect.

One central concept of SARIF are rules. Analysis tools
define a set of rules that they can validate, and an analysis
run produces results for a given program, which consist of a
number of rule violations. The SARIF specification requires
that ”each result is produced by the evaluation of a rule”,
meaning that all results semantically correspond to the viola-
tion of a software quality rule or guideline.
"results": [{
"ruleId": "C2001",
"ruleIndex": 0,
"message": { "id": "default" },
"locations": [{
"physicalLocation": {

"artifactLocation": {
"uri": "src/collections/list.cpp",

"uriBaseId": "SRCROOT"
}
},
"logicalLocations": [
{"fullyQualifiedName":"collections::list::add"}
]
}]

}]

Listing 3. Sample results definition in SARIF [22]

Listing 3 shows an example of a rule violation against a rule
named C2001 in SARIF. It highlights the amount of additional
information that can be attached to a finding, including a
physical and logical location, as well as messages.

We choose to not use SARIF as our data format because the
conceptual goal of our design is not to store violations of some
rules or guidelines, but also general properties (e.g. callgraphs)

of a given program. These properties are not derived by
checking whether a given rule holds and are also not directly
connected to some aspect of a program’s quality. In fact,
while SARIF aims to provide a broad range of information
to program developers directly, our goal is to make general
program properties reusable for other analyses as well.

However, our format definition (see Figure 2) al-
lows us to also represent findings as specified in
SARIF, where we can use SoftwareEntityReference
objects to model logicalLocations, and general
ObjectResultFormats to represent further information
about the physical location of a violation. It would therefore
be feasible to import results specified via SARIF into SPARRI.
On top of that, it would be possible to represent the entire
SARIF specification using our format definitions, thus allow-
ing not only the direct upload of SARIF files but also their
download when accessing the results.

Using SARIF has some advantages over our data format.
It is an industry-backed, fully standardized format that is
supported by some existing analysis implementations, as well
as a variety of IDE integrations and GUI tools. SARIF also
supports localization for multiple languages, as well as hier-
archical views and taxonomies for rule violations. However,
its main goal is to provide program developers with a way of
managing, aggregating, and inspecting violations of software
quality rules. With our work, we provide a less restrictive
result format, where any computed property of a program can
be stored, inspected and ultimately be used in other analysis
implementations. This way we open the possibility to reuse
intermediary results.

VIII. CONCLUSION

For this work, we evaluated 40 state-of-the-art SPA imple-
mentations. We analyzed if and how existing results are reused,
what new results are produced, and how they are persisted.
We found that while most analyses reuse some form of partial
result, this rarely happens across tools or research projects
(5% of publications). Although many analyses produce general
results, only 13% of publications talk about persisting results
in any form.

Motivated by those findings, we proposed a structured
process for publishing, indexing, and reusing SPA results.
We implemented SPARRI, a prototype supporting our reuse
process for Maven Central. SPARRI is a distributed application
featuring multiple built-in SPA implementations that can be
triggered on-demand, as well as an HTTP API for accessing
analysis results and software information.

Our evaluation of SPARRI illustrated that reusing SPA
results can result in significant runtime reductions, in some
cases over 92%. We further found that other research areas also
benefit from persisting analysis results. We replicated multiple
empirical studies on software using only SPARRI’s HTTP
API, thus drastically reducing implementation complexity. We
further hypothesize that tasks like benchmark creation and
artifact evaluation can be supported using SPARRI.
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