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In modern-day software development, a vast amount of public software libraries enable the reuse of existing implementations for
reoccurring tasks and common problems. While this practice does yield significant benefits in productivity, it also puts an increasing
amount of responsibility on library maintainers. If a security flaw is contained in a library release, it may directly affect thousands of
applications that are depending on it. Given the fact that libraries are often interconnected, meaning they are depending on other
libraries for certain sub-tasks, the impact of a single vulnerability may be large, and is hard to quantify. Recent studies have shown
that developers in fact struggle with upgrading vulnerable dependencies, despite ever-increasing support by automated tools, which
are often publicly available. With our work, we aim to improve on this situation by providing an in-depth analysis on how developers
handle vulnerability patches and dependency upgrades. In order to do so, we contribute a miner for artifact dependency graphs
supporting different programming platforms, which annotates the graph with vulnerability information. We execute our application
and generate a data set for the artifact repositories Maven Central, NuGet.org, and the NPM Registry, with the resulting graph being
stored in a Neo4j graph database. Afterwards, we conduct an extensive analysis of our data, which is aimed at understanding the
impact of vulnerabilities for the three different repositories. Finally, we summarize the resulting risks and derive possible mitigation
strategies for library maintainers and software developers based on our findings. We found that NuGet.org, the smallest artifact
repository in our sample, is subject to fewer security concerns than Maven Central or the NPM Registry. However, for all repositories,
we found that vulnerabilities may influence libraries via long transitive dependency chains and that a vulnerability in a single library
may affect thousands of other libraries transitively.
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1 INTRODUCTION

Software reuse has proven to be an essential part of software development [5, 18]. A vast amount of public repositories
exist, where developers can choose open-source software libraries for a variety of different tasks and programming
environments. Various build systems like NPM [19], Nuget [25] or Maven [14] conveniently integrate the management
of external components into development workflows, thus allowing developers to browse and add components by the
click of a button.
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As a result of the continuous improvement in tooling support, the amount of open-source library code has been
shown to be more than 45% of the total project code for open-source Java projects, with only 10% of projects not reusing
code at all [18]. Similarly, the 2021 Synposis Open Source Security Report finds that of 1,546 commercial codebases
analyzed in 2020, 98% contained open-source library code, with the average application being comprised of 75% open
source [42].

It has been established by W.C. Lim and others, that software reuse has several positive effects on a software product
and its development process, including increased productivity and shorter time-to-market [22]. By May 2021, almost 7
million artifacts are available on Maven Central, which is only one of many repositories for open-source Java libraries
[28]. A similar trend in the availability of reusable software artifacts can be observed in other repositories as well, with
examples like the NPM Registry and NuGet.org hosting over 16 million artifacts combined (cf. Section 4.3).

However, using external open-source libraries from repositories like NuGet.org also introduces some distinct
disadvantages. Most prominently, those libraries impose a new level of complexity on a project. Many of them have
dependencies to other libraries of the same repository, thus creating a potentially large dependency graph (often called
dependency tree), containing both the direct and transitive dependencies of a project. Decan et al. have shown in 2019
that these graphs can exhibit depths larger than six, with roughly 25% of all artifacts having a dependency graph of
depth at least three. The authors also observe that the ratio of transitive to direct dependencies roughly equals 15
for both the NPM Registry and NuGet.org [11]. Overseeing the different responsibilities, release dates and available
versions of all libraries in that graph is a complex task that is likely to add additional overhead to the development
process [32].

This fact becomes especially relevant when considering vulnerabilities in software libraries. A single vulnerability
in a certain library may break the security of all libraries and projects using it, be it directly or transitively. While
vulnerabilities being present in a dependency does not necessarily mean vulnerable code is being used [6], Lawrence
and Frohoff have shown that in Java vulnerabilities may be exploited simply because the corresponding code is on the
classpath [21]. By May 2021, one single release of a popular library like jackson-databind is directly used by more than
18,000 other libraries on Maven Central alone [29], which underlines the impact a single vulnerability may have onto
the whole repository.

In order to minimize the risk of developers not knowing about vulnerabilities in their library dependencies, those
vulnerabilities are often disclosed using the CVE standard. The list of all known CVE vulnerabilities is publicly available
[9] and frequently updated. The list has been started in 1999 and has, as of May 2021, more than 153,000 entries,
averaging at more than 19 vulnerabilities per day. While those entries are not solely related to software libraries, but
also applications, these numbers still indicate that fixing vulnerabilities in software libraries is not a rare case, but
something that must be anticipated during the development process.
In general, the process of safely dealing with a newly published vulnerability is threefold:

(1) The maintainers of the affected library publish a new version that does not contain the vulnerability anymore.
We call this new version a patch for the vulnerability.

(2) The maintainers of all libraries directly using the affected library need to publish new versions that upgrade
their dependencies to use the patch instead of the vulnerable version of the library. This process needs to be
iterated recursively to account for transitive dependencies.

(3) Similar to library maintainers, project developers need to upgrade their dependencies for any of the (transitively)
affected libraries to not use vulnerable versions anymore.
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While in theory, this process is adequate to deal with the problem at hand, in reality, there are several issues
that negatively influence its applicability. Most importantly, it requires the developers of all libraries to be actively
maintaining their code. Moreover, they have to constantly monitor all published vulnerabilities and patches, and
correlate that data with the dependency graph of their library. While floating version references (i.e. dependencies with
a range of valid version numbers) may in some cases enable maintainers to automatically benefit from vulnerability
patches, they still need to verify that the vulnerability does not apply anymore.

As the act of monitoring vulnerability publications for every artifact of a dependency graph is both cumbersome
and repetitive, to this day several tools have been developed in an effort to automate this task. A prominent example
is Snyk, which can be added to software repositories as a CI check that informs developers of vulnerabilities in the
project’s dependencies, as well as their severity and possible patches. Going one step further, Dependabot automatically
upgrades vulnerable dependencies and creates a corresponding pull request.

Despite the availability of tools like Snyk and Dependabot addressing the problem of vulnerable dependencies, a 2017
study performed by Kula et al. found that 69% of developers claim to be unaware of being affected. As a result, more than
81% of the systems they analyzed contained vulnerable dependencies [20]. In addition to that, some library maintainers
may never release a patched version, as they decided to stop maintaining their library. This information is not easy to
obtain, as there is no standard way of publishing it. Pashchenko et al. [32] argue that such halted dependencies may be
identified by using a heuristic based on the average interval between different releases.

In their study, Kula et al. conclude that one reason for this is the developer’s perception of security patches and
dependency upgrades as added responsibility yielding little to no benefits for the user [20]. While the act of upgrading
a dependency does not consume much time, it requires careful consideration to account for compatibility, performance,
and security. Therefore, a good understanding of the respective repository and its patching behavior is key to making
informed decisions for dependency upgrades, thus ultimately improving application security.

However, the question of how and when developers release patches and upgrade dependencies in different artifact
repositories has yet to be answered. This is due to a lack of empirical data on the subject, especially regarding the
differences between repositories. To this day, there is no vulnerability-enriched dependency graph available for any of
the major artifact repositories, although that data is freely accessible online. As a result, no formal analysis has yet been
conducted on patching behavior in the presence of multi-level dependency graphs.

The main goal of our work is to provide detailed insights into the problem of vulnerable software artifacts and their
dependencies by conducting an in-depth analysis that investigates the patching behavior across different repositories.
Based on that, we derive development strategies that increase application security. In summary, we contribute:

(1) A distributed application for mining the dependency graphs of different software repositories and annotating it
with vulnerability information. Our implementation is presented in Section 4 and published on Zenodo [12].

(2) An analysis on the patching behavior of library developers in NuGet.org, the NPM Registry, and Maven Central.
We highlight our analysis design, methodology, and results in Section 5.

(3) A set of resulting threats to application security and possible mitigation strategies, which are discussed in Section
6.

2 BACKGROUND

Build Systems like Maven or NPM resolve dependency specifications in so-called software artifact repositories. Popular
examples for such repositories are Maven Central with almost 7 million artifacts by May 2021 [28], the NPM Registry
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(around 13.5 million artifacts, cf. Figure 4) and NuGet.org with around 2.8 million artifacts [26]. These repositories
generally expose a web-based interface granting full read-access to any client that wants to consume the contained
artifacts. For Maven Central this interface is file-based1, while for other examples like NuGet.org2 and the NPM Registry3

it is a JSON-based artifact index.
When developers reference an artifact in their project, that artifact may itself be depending on other artifacts of the

same repository, thus introducing transitive dependencies to the project. Consequently, each project has a dedicated
dependency graph, which may span multiple levels and is resolved by the build system. Developers do not necessarily
know about the transitive dependencies in their project, as they are typically resolved transparently. However, commands
like mvn dependency:tree4 may be used to explicitly list the full dependency graph.

There are two ways of referencing software artifacts in build systems for the context of this work. The first one,
which is used predominantly by Maven, is to specify the unique library identifier and the version number of the target
artifact. We call this a fixed artifact reference, as it references exactly one target artifact. While Maven also supports the
use of version ranges [30], we find that these are rarely used in any of the artifacts online. On the other hand, floating
artifact references, which are used in NPM and NuGet, consist of the unique library identifier and a range of valid
version numbers. For this type of reference, the build system selects one of the valid target artifacts, which usually is
the most recent release of the respective library.

Vulnerabilities in software artifacts can be discovered both unintentionally, e.g. by developers using the artifact, or
intentionally, e.g. by users reviewing the source code of an artifact. Frei et al. illustrate the different options a discoverer
has upon finding a vulnerability [15]. These include selling it on the black or white market, creating an exploit or a
patch, or disclosing it to the public. For the context of this work, the last option is of special interest.

Launched by the MITRE Corporation in 1999, the CVE list [9] is an online database of such publicly disclosed
vulnerabilities, and has since emerged as a de facto standard for identifying and referencing vulnerabilities [15]. For
each vulnerability, it holds a unique identifier, a description, and a public reference. The NVD was created in 2005 and
builds upon the CVE list by providing additional information on fixes, severity, and impact of each CVE entry [8].

Several tools incorporate those data sources in order to inform developers about vulnerabilities. Prominent examples
include the Maven plugin Dependency-Check Maven [38] and Dependabot5. The services provided by Snyk6 rely on a
proprietary vulnerability database, which incorporates not only vulnerabilities published by the NVD but also findings
from academic collaborations and proprietary research, as well as vulnerabilities reported by the community. According
to Snyk, each finding is manually tested for accuracy and enriched with additional metadata, including an explicit link
to the set of affected software artifacts [24]. Furthermore, for vulnerabilities not imported from public sources like the
NVD, Snyk distinguishes the date of disclosure and date of publication. Upon disclosure, Snyk assess the severity and
risks of vulnerabilities and, following an explicit Disclosure Policy, contacts the maintainers of the affected modules.
After that, Snyk cooperates with the module maintainers and publishes the vulnerability information following a public
disclosure timeline. Finally, as Snyk is officially registered as CVE Central Naming Authority, it assigns a CVE identifier
for the vulnerability [23].

1repo1.maven.org/maven2
2api.nuget.org/v3/catalog0/index.json
3skimdb.npmjs.com/registry/_all_docs
4maven.apache.org/plugins/maven-dependency-plugin/examples/resolving-conflicts-using-the-dependency-tree.html
5dependabot.com/
6snyk.io
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3 APPROACH

Our approach incorporates three different phases. First, we aggregate data on software artifact dependencies for different
repositories and annotate vulnerability information. We then define research questions and answer them using the
data produced in the previous phase. With our research questions, we investigate how and when library maintainers
upgrade a directly or transitively vulnerable release, and how many artifacts are affected by vulnerabilities in the first
place. Finally, we discuss the results, identify potential security threats and derive mitigation strategies.

For data aggregation, we design and implement a distributed application called Miner. This application builds the
artifact dependency graph for different repositories, which is done by querying the respective web interfaces. In a second
step, the Miner utilizes a customized dump of the Snyk database to annotate the dependency graph with vulnerability
information. The graph is then stored in a database for further processing. We present the design of our Miner in Section
4.1, highlight implementation details in Section 4.2, and present insights into the resulting data set in Section 4.3.

In the second phase, we conduct our analysis, which is guided by four different research questions. We present those
questions and define their scope in Section 5.1. In order to answer those questions, we implement different analysis
applications that extract metrics from the annotated dependency graph, and also implement tools for manual data
exploration. We provide the results for each analysis in Section 5.3, which includes diagrams and plots of the previously
generated metrics, as well as the outcomes of our manual analyses.

Finally, we discuss the results of our analysis in Section 6. We systematically derive potential threats to application
security from our findings and analyze which repositories are affected by them. We then propose possible mitigation
strategies for those threats, which are meant to help software developers improve the security of their development
process.

4 DATA AGGREGATION

In order to aggregate the data set that we perform our analysis on, we developed a distributed application called Miner.
It extracts the artifact dependency graph from different repositories, annotates it with vulnerability information and
stores it in a persistent fashion for further processing. In this chapter, we present the design and implementation of said
application.

4.1 Design

In this section, we present the core design decision upon which we based application development. We aimed to include
all relevant properties that might increase analysis expressiveness in the final data model.

Selecting Repositories. While we designed our application with extensibility in mind, we selected an initial set of artifact
repositories in order to identify a superset of relevant artifact properties. We decided to include repositories for three
programming platforms: the JVM, .NET, and JavaScript. To ensure the relevance of our work, we consider only the
most popular repository for each platform, yielding Maven Central (JVM), NuGet.org (.NET) and the NPM Registry

(JavaScript).

Defining a Suitable Data Model. The creation of a suitable data model for the resulting data set involves defining
properties for artifacts, vulnerabilities, and the relation of those two entities.

We define our data model for software artifacts by inspecting the data provided by the three selected repositories.
Based on that, we identify common properties and evaluate their usefulness in the context of our work.
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While named differently, all three repositories incorporate the concept of a unique library identifier, which is always
accompanied by a corresponding version number. In Maven Central, the library identifier is composed of two attributes
called groupId and artifactId, for NuGet.org and the NPM Registry it is a simple attribute called id and name,
respectively. The concatenation of library identifier and version number yields a unique artifact identifier. Also, all
three repositories expose the publication date of an artifact.

Naturally, a dependency graph cannot be constructed without information about an artifact’s dependencies. We
represent each dependency as a tuple, containing both a library identifier and a domain-specific expression encoding
a range of valid version numbers. As a result, the NPM dependency "lodash":"^4.17.4" references all artifacts of
library lodashwith a version number greater than or equal to 4.17.4 up until the next major version 5.0.0, excluding. For
our data model, we introduce an entity that holds three properties: the target’s repository name and library identifier,
as well as a repository-specific version range specifier. For the sake of traceability, we keep the original definition of the
range specifier in our datamodel, and only normalize the data when resolving references in a later stage (cf. Section 4.2).

So in summary, the set of properties for software artifacts in our data model contains a unique library identifier, a
version number, the release date, and a list of artifact dependencies.

Our source of information on software vulnerabilities is a customized data dump of the Snyk Vulnerability DB, which
was provided to us by Snyk Ltd. in an effort to support our research, and is up-to-date as of 16th July 2020. Based on this
data source, we define our data model for vulnerabilities, which includes the vulnerability’s internal Snyk identifier, its
severity (Critical, High, Medium or Low) and a reference to an associated CVE identifier, if available. Furthermore,
we incorporate the date of disclosure and date of publication. Lastly, vulnerabilities must be linked to the software
artifacts that they affect. In Snyk, this is done by providing a unique library identifier and domain-specific version
range specifier, for which they use a syntax that is different in all three repositories. Similar to artifact dependencies,
we keep the domain-specific range specifier in our data model, and normalize the data when it is processed.

Vulnerability

+ SnykId: String
+ AssociatedCVE: String
+ Severity: String
+ PublishedAt: Date
+ DisclosedAt: Date

ArtifactReference

+ TargetRepository: String
+ LibraryIdReference: String
+ VersionRange: String

SoftwareArtifact

+ Repository: String
+ UniqueId: String
+ LibraryId: String
+ Version: String
+ ReleaseDate: Date

next release > 

0..1 0..1

next version > 
0..1 0..1

is patched by > 

0..n
0..m

current target > 0..n
0..1

references > 

0..n
0..m

affects > 
0..n 1

 < depends on
0..n0..m

Fig. 1. UML description of the overall data model

We summarize our data model in Figure 1. It features a single entity called ArtifactReference, which is used to
model both artifact dependencies and vulnerability-to-artifact relations. It has an associated current target, which is the
referenced artifact with the highest version number. Furthermore, we identified additional relations that are required to
perform a meaningful analysis: A Patching Relation connects each vulnerability to zero or more artifacts that incorporate
Manuscript submitted to ACM
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: SoftwareArtifact

Repository =    "nuget"
UniqueId =       "jQuery:3.4.1"
LibraryId =       "jQuery"
Version =         "3.4.1"
ReleaseDate = "2019-05-026T18:16:50"

: SoftwareArtifact

Repository =    "nuget"
UniqueId =       "jQuery:3.4.0"
LibraryId =       "jQuery"
Version =         "3.4.0"
ReleaseDate = "2019-05-026T14:16:36"

: SoftwareArtifact

Repository =    "nuget"
UniqueId =       "jQuery:1.4.2"
LibraryId =       "jQuery"
Version =         "1.4.2"
ReleaseDate = "2011-01-07T07:54:42"

: SoftwareArtifact

Repository =    "nuget"
UniqueId =       "jQuery:1.4.1"
LibraryId =       "jQuery"
Version =         "1.4.1"
ReleaseDate = "2011-01-07T07:54:41"

: SoftwareArtifact

Repository =    "nuget"
UniqueId =       "jQuery:3.5.0"
LibraryId =       "jQuery"
Version =         "3.5.0"
ReleaseDate = "2020-04-146T21:42:55"

: Vulnerability

SnykId =               "SNYK-DOTNET-JQUERY-565440"
AssociatedCVE = 	"CVE-2020-11023"
Severity =             "medium"
PublishedAt =       "2020-04-13T15:33:49"
DisclosedAt =       "2020-04-10T00:00:00"

: ArtifactReference

TargetRepository = "nuget"
LibraryIdReference = "jQuery"
VersionRange = "[1.0.3 ,3.5.0)"

current target

next release (transitive x54)

next version (transitive x54)

references

next version

next release

next versionnext releasereferencesnext release next version

patched by
references

references

affects

Fig. 2. Example instance of the data model shown in Figure 1

the respective patch. Furthermore, there are two distinct relations ordering releases for each unique library, one of them
considering the time of release (next release), the other one the version number (next version).

Figure 2 illustrates the data model by showing a sample instantiation for a vulnerability that is associated to
CVE-2020-110237 and affects the jQuery library in NuGet.org. For the sake of readability only five entities of type
SoftwareArtifact are shown here, in reality there are 58 artifacts affected by this vulnerability.

Defining Components. In order to enable a modular and distributed implementation of our miner, we decompose the
task of data aggregation into sub-tasks, each of which is addressed by a different component.

The Database component is responsible for storing the data set in a persistent fashion. It exposes an interface
that allows structured querying of the data, which is required for the subsequent analysis phase. The Artifact Miners

enumerate all software artifacts for their respective repository and store the results in the database using the data
model defined in Figure 1. As the interfaces of all three repositories are different from each other, there is one dedicated
miner implementation per repository.

The task of parsing the list of vulnerabilities and transforming them to the aforementioned data model is handled by
the Vulnerability Processor. Finally, the Reference Resolver enumerates all ArtifactReference entities in the database,
which implicitly reference a set of artifacts, and converts them to explicit entity-to-entity relations. This is done so that
the subsequent analysis does not need to re-resolve those implicit relations. Using those explicit relations, the Patch

7https://nvd.nist.gov/vuln/detail/CVE-2020-11023
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Detector then enumerates all vulnerabilities in the data set and finds those artifacts that patch the vulnerability, i.e.
the first artifacts of the targeted library that are not affected by the vulnerability anymore. The vulnerability and its
patching artifact are connected via an entity-to-entity relation in the database.

4.2 Implementation

As previously mentioned, we design a distributed application for the task of aggregating our data set. We separately
implement and package each component, and manage their deployment using Docker and Portainer. For our implemen-
tations we use Python 3.8, and our Docker images are based on the python-alpine image in version 3.8.2-alpine3.11.

We publish our miners and the respective components for postprocessing as open-source Docker images via GitHub8.
Due to our data on vulnerabilities being the intellectual property of Snyk Ltd., we cannot publish any components
handling this data. However, they can be obtained directly from Snyk Ltd.

In the following, we highlight the most important implementation details, the challenges we faced, and the tools we
utilized.

Database. As our data set is essentially a large dependency graph with annotated vulnerability nodes, we select the
graph database Neo4j as our storage backend. We deploy it using the official Docker image9 in version 4.0.5.

Miners. For each repository, we develop and implement a dedicated miner component. For Maven Central we initially
relied on an existing implementation by Benellalam et al. [4], which also stores a full dependency graph using Neo4j.
However, due to multiple problems we faced when executing this implementation (cf. Section 4.3), we had to re-
implement the Maven miner from scratch.

All our implementations follow an asynchronous Producer-Consumer-Architecture: a producer enumerates artifacts,
which are grouped into batches and piped to a pool of consumer threads. Those consumers store all artifacts in
the database. By decoupling those two processes, periods of low storage throughput do not slow down the artifact
enumeration process.

For NuGet.org, artifacts are enumerated by consuming an append-only catalog that keeps track of all types of
artifact-related events. For each publication event, the miner retrieves corresponding artifact properties by issuing a
single HTTP request to the NuGet.org API. The catalog consists of multiple pages, for which the index is located at
api.nuget.org/v3/catalog0/index.json.

In contrast to that, the NPM Registry provides a single index file at replicate.npmjs.com/_all_docs, which contains
identifiers for all libraries ever created. Our NPM Miner utilizes this identifier to retrieve a list of all artifacts belonging
to that library at the NPM Registry API.

Finally, for Maven Central we leverage an Apache Lucene index of all artifact identifiers, which is located at https://
repo.maven.apache.org/maven2/.index/ and updated weekly. For each identifier, the miner downloads the corresponding
pom.xml file from Maven Central and extracts information about the artifact and its dependencies. However, in contrast
to other repositories, Maven’s dependencies cannot always be extracted by looking at a single file. They may be specified
in one of the artifact’s parent POM files, or use property values that need to be resolved in the POM file hierarchy.
These problems can be addressed by using the Maven command-line interfaces to resolve dependencies, which does,
however, take a very long time and uses a significant amount of disk space for POM file caching. Instead, we developed

8The repository is located at https://github.com/sse-labs/dependency-graph-miner. An archived version is available via Zenodo at https://doi.org/10.
5281/zenodo.5040439
9hub.docker.com/_/neo4j
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1.0.0 1.8.0 1.8.11 1.8.12 1.8.13 1.9.0 1.9.9 2.0.0 2.0.3 3.0.0

Fig. 3. Detecting patching library releases

our own dependency resolver using the standard Java XML libraries, which significantly increases the performance
of our application. To guarantee correctness, we use a secondary dependency resolver as a fallback: Whenever our
XML resolver fails to resolve a property value (which may happen in cases of so-called import-scope dependencies), we
re-resolve dependencies using the Eclipse Aether library10. As this library is solely available for the JVM platform, we
implement the Maven miner in Java and deploy it using the official maven Docker image in version 3.6.0-jdk-8-alpine.

Vulnerability Processor. The vulnerability processor consumes our snapshot of the Snyk Vulnerability Database,
which has been provided in the JSON file format and creates corresponding entities of type Vulnerability and
ArtifactReference in the database.

Postprocessing. After theMiners and Vulnerability Processor have aggregated all data necessary, two distinct components
perform postprocessing steps in order to prepare the data for analysis.

The Reference Resolver converts a number of implicit relations between database entities into explicit relations,
which enables us to greatly improve the performance of our subsequent analyses and simplifies transitive queries to
the database. It first processes all artifacts for each unique library identifier and creates relations of type NEXT and
NEXT_RELEASE. These represent the order of versions (according to the Semantic Versioning 2.0.0 specification11) and
the order of release dates for all artifacts of the given library, as illustrated in our data model in Figure 1. Afterwards,
the Reference Resolver connects all database entities of type ArtifactReference with their target artifacts by creating
direct relations of type REFERENCES. This is done by parsing the specific version range qualifier and then filtering
all artifacts of the target library for matching versions. The Reference Resolver also creates a special relation called
CURRENT_TARGET between each ArtifactReference and its target artifact with the highest version number. The result
of a successful run based on a reference to the Nuget.org library jQuery can be seen in Figure 2.

Finally, the Patch Detector builds on top of the transformations performed by the Reference Resolver and detects the
set of patches for each vulnerability. As the range of version numbers affected by a vulnerability may be discontinuous,
it is possible that there are multiple patches for a single vulnerability. The component incorporates two different
approaches: First it checks whether we have explicit data on the patching software artifact, which is true for most of
the vulnerabilities. If no such data exists, the patching artifacts are calculated by finding the first non-affected library
releases for which the predecessor is affected by the vulnerability. This process is illustrated in Figure 3, where version
numbers highlighted red are affected by a vulnerability, and green version numbers indicate the detected patches. In
the database, a vulnerability is connected to each of its patches with a relation of type PATCHED_BY.

4.3 Execution Results

We initially executed our miner throughout the course of 70 days. The first phase was dedicated to running the Miners
for all three repositories, which took a total of 43 days. The second step of executing the Vulnerability Processor took
less than one minute, whereas the postprocessing phase required another 27 days to complete. We identified two main
factors with significant impact on the application performance:
10wiki.eclipse.org/Aether
11semver.org/
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Maven NPM Nuget

0

5

10

15

0.34 1.29 0.27
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Fig. 4. Number of artifacts and libraries per repository

Maven Miner For our Maven Miner component we initially reused an existing implementation published by
Benelallam et al. [4] in 2019. During its execution, we observed a large variation regarding the artifact mining
speed. Furthermore, some internal components of the application required constant manual restarts, which lead
to additional performance penalties. Due to those problems, we aborted the program execution and instead
developed our own Maven Miner implementation from scratch (cf. Section 4.2).

Reference Resolver The Reference Resolver identifies potential targets of a reference, which involves a lookup via
their unique library identifier. For all three repositories, these identifiers are generally case-insensitive. However,
in NuGet.org references often use a style of capitalization that differs from the original definition. Therefore, the
Reference Resolver is required to do a case-insensitive property lookup in the Neo4j database, which turned out
to be significantly slower than an exact-match lookup. For future runs of the NuGet.org Miner, this problem has
been averted by converting all package names to lowercase.

Running our ownMavenMiner implementation took additional 14 days, including the second phase of postprocessing.
Our final data for NuGet.org and the NPM Registry is up-to-date as of June 2020, while the data for Maven, which
was calculated at a later stage, is valid as of April 2021. Furthermore, our data on vulnerabilities is up-to-date as of
July 2020. In order to avoid inconsistencies in the data set, we disregard all information on artifacts and vulnerabilities
released after June 2020, thus creating a snapshot of that point in time for all three repositories and their associated
vulnerabilities.

Our final data set contains a total of 21.8 million software artifacts spread across 1.9 million libraries, and incorporates
7110 vulnerabilities, 27% of which do not have associated CVE identifiers. There is a total of 3736 distinct CVE identifiers
referenced in the data set. Figure 4 illustrates how those values are distributed across the three different repositories.
The data is stored in two separate Neo4j instances, which in their uncompressed state require a combined disk space of
51 GB.

5 ANALYSIS

Based on our data set presented as part of Section 4.3, we design and conduct an analysis that characterizes the patching
behavior exhibited by maintainers of the different artifact repositories. We aim to identify how much influence software
vulnerabilities have, especially considering transitive artifact dependencies. Furthermore, we investigate the time it
takes library maintainers to release patches and to upgrade vulnerable dependencies.
Manuscript submitted to ACM
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In this section, we first present the design of our analysis (Section 5.1), which consists of four different research
questions (RQs). After that, we present our methodology in Section 5.2, and finally we outline our results in Section 5.3.

5.1 Design

With our analysis design, we aim to define the scope of the term patching behavior as precisely as possible. We do so by
deriving a set of research questions, each of which involves metrics that contribute to our subjective understanding
of the term. Thus, answering those questions yields a characterization of the patching behavior in each of the three
repositories. This, in turn, enables us to compare the results across different repositories and to identify characteristic
differences regarding the handling of software vulnerabilities.

In total, we answer four distinct research questions which constitute our analysis. In the following, we present the
goal and scope of each question in detail.

RQ1: How long does it take developers to release patches? We identify the duration between the publication of a
vulnerability and the release of an appropriate patch. This value is of critical interest, as it describes a period of time in
which a vulnerability is publicly known without developers having an option to mitigate the risk. Also, the duration
between vulnerability disclosure and patch release is of interest, as well as a comparison of the two values.

RQ2: What is the transitive impact of vulnerabilities? We determine the number of artifacts that are affected
by a given vulnerability in the first place. While this is rather trivial to calculate for artifacts directly affected by a
vulnerability, it is interesting to also identify artifacts that are transitively affected. It is especially relevant to compare
these values across different repositories since the influence of vulnerabilities is expected to vary. The results are likely
to help us understand the net impact a vulnerability may have, depending on the respective repository.

RQ3: How long does it take developers to upgrade vulnerable direct dependencies? We analyze the artifacts
directly depending on a vulnerable artifact. Our overall goal is to understand when vulnerable dependencies are fixed
by library developers, as compared to the vulnerability’s publication. It is also interesting to see whether or not these
upgrade durations depend on the respective library, and how they differ across multiple repositories. The results may
help library developers to understand the consequences of vulnerable dependencies, and other developers to carefully
select dependencies for their project.

RQ4: Do developers adhere to published security advisories? We investigate whether or not developers use
vulnerable dependencies, for which the corresponding security advisory has already been made public. The results
indicate whether or not vulnerability publications are being monitored and considered during development.

5.2 Methodology

We extract different metrics from our data set in order to answer the RQs defined above. Besides those automated
analyses, in some cases, we also require utilities for manual data exploration, which we implement using Python,
Plotly12 and Dash13.

We implement two different modes of operation regarding the detection of dependencies for all metrics that involve
transitive relations. In the data set, a dependency is modeled using a node of type ArtifactReference, which is
connected to all valid releases of the target library (as seen in Figure 2). Considering all of those targets as possible
12plotly.com/python/
13plotly.com/dash/
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dependencies vastly increases the search space of the respective analysis, and does not correspond to reality, where a
package manager picks exactly one of the valid target releases. Therefore, this mode of operation results in data that is
an overapproximation (M>) of reality.

Another option for dependency detection is to select only one of the possible targets for any ArtifactReference.
The most reasonable choice is to select the most recent release of the target library, as this is what any package manager
does in the absence of version conflicts. Our analyses leverage the CURRENT_TARGET relation annotated by the Reference
Resolver to do so. This mode of operation yields an underapproximation (M<) of reality.

All of our analyses that consider transitive dependencies can be executed in both theM> andM< mode. However,
since package managers always select one target per dependency, and only deviate from the most recent release in the
rare case of version conflicts, we consider M< to yield data that is intuitively closer to reality. Therefore, all results
presented in the following Section 5.3 have been obtained using this mode of operation.

5.3 Results

In this section, we present our analysis results for the aforementioned research questions. For each of them, we briefly
present the metrics involved and illustrate the results per repository using different types of diagrams.

RQ1: How long does it take developers to release patches? For this first RQ, we analyze the time from a
vulnerability’s publication or disclosure to the release of an appropriate patch by the developers of the target library.
A previous study on the NPM Registry from 2018 [10] suggests that patches are often published before the date of
publication, and even before the date of disclosure. We, therefore, expect that most patching durations are negative.

1 MATCH (v:Vulnerability) -[: PATCHED_BY]->(artifact)

2 WITH v.SnykId AS id, v.DisclosedAt AS disclosure , v.PublishedAt AS publication , artifact.UniqueId AS

artifact , artifact.releaseDate AS release

3 RETURN id, disclosure , publication , artifact , release;

Listing 1. Cypher query to extract patching durations

For each vulnerability and patching artifact, our analysis extracts the duration from vulnerability publication to
patch release (𝛿P) and from vulnerability disclosure to patch release (𝛿D) in seconds. This is done by issuing the Cypher
query illustrated in Listing 1, and calculating the differences between the datetime values release and dis / pub for
each patching artifact. As this process is limited to vulnerabilities that have patches associated to them, a separate
database query first retrieves the number of unpatched vulnerabilities for each repository.

The bar chart in Figure 5 illustrates the number of unpatched vulnerabilities per repository. In addition to that,
the percentage of vulnerabilities with wildcard version range specifiers is shown. These vulnerabilities by definition
cannot be patched by any artifact, as they reference the entirety of their target library, for example with a version range
qualifier of "*" or "[0,]".

While on average 35.8% of all vulnerabilities are not patched, NPM has by far the highest amount with a percentage of
almost 50%. Upon further investigation, we found that this is partially due to so-called Security Holders, which we found
to be referenced by 14% of all NPM vulnerabilities. Security Holders are symbolic artifacts that act as a placeholder
for library identifiers that have previously been in use and are not usable anymore for security reasons [43]. Figure 5
shows the values for NPM when excluding security holders as NPM WSH (without security holders).

In Figure 6, we illustrate the distribution of severities for those unpatched vulnerabilities. While we initially expected
those vulnerabilities to be of minor severity, our data indicates that in fact more than 50% are either of severity high or
Manuscript submitted to ACM
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Fig. 6. Severity of unpatched vulnerabilities

Maven NPM Nuget
Mean 𝛿𝐷 73.1 7.9 −3.7
Median 𝛿𝐷 −0.6 0.8 0.7
IQR 𝛿𝐷 184.0 25.4 3.8
Mean 𝛿𝑃 −188.2 −159.8 −209.8
Median 𝛿𝑃 −28.2 −7.9 −30.3
IQR 𝛿𝑃 311.8 143.5 395.8
Table 1. Key measures for 𝛿P and 𝛿D in days Maven NPM Nuget Total
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Fig. 7. Distribution of 𝛿P and 𝛿D values per repository

critical across all three repositories. This is mainly influenced by the NPM repository, in which more than 70% of all
unpatched vulnerabilities have a high or critical severity. For Nuget and Maven, we observed a behavior that is more in
line with our expectations, as for both of them around 66% of the unpatched vulnerabilities are either of severity low or
medium.

For the remainder of this section, we only consider vulnerabilities with existing patches for our analysis. In Table
1, we present the mean and median values for 𝛿𝐷 and 𝛿𝑃 , as well as the respective Interquartile Range (IQR) in days.
Regarding 𝛿𝑃 , we observe that vulnerabilities in NuGet.org seem to be patched the earliest, followed by Maven Central
and then the NPM Registry. For 𝛿𝐷 we observe very similar median values for all three repositories, however, there are
large differences in the IQR values, indicating a much more skewed distribution for Maven Central (184.0) as compared
to the NPM Registry (25.4) or NuGet.org (3.8).

In general, in Table 1 we observe rather large IQR values, especially for 𝛿𝑃 . In order to gain more meaningful insights,
we plot a stacked histogram of both the 𝛿D and 𝛿P values in Figure 7. For each repository, the chart indicates the amount
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of patches released before vulnerability disclosure (𝛿D ≤ 0), between disclosure and publication (𝛿D > 0 > 𝛿P) and after
publication (𝛿P ≥ 0).

We observed that, in total, almost 50% of all vulnerabilities are patched before their date of disclosure. This suggests
that library developers employ vulnerability detection processes, and manage to significantly reduce the attack surface
of their library before any external actor informs them about a particular threat. Furthermore, around 73% of all
vulnerabilities are patched before their publication, meaning that without any insider knowledge, an attacker may
only be able to exploit the remaining 27% for an attack. In addition to that, our data suggests that an additional 7% of
vulnerabilities are patched within the first month after publication.

While this average data does match our general expectation of the patch release date distribution, there are some
notable differences between repositories. While for Maven Central over 50% of all vulnerabilities are patched before their
disclosure, the corresponding value for NuGet.org is only 33%. However, with 86% being patched before publication,
NuGet.org outperforms Maven Central, which is below 75% for this value. This suggests that maintainers of the
NuGet.org repository rely on vulnerability disclosure to a larger degree than their colleagues at Maven Central, but are
still able to patch a larger amount of vulnerabilities before they are made public.

Over 25% of all vulnerabilities are unpatched, with the majority being of high or critical severity. The
main driver for both trends is the NPM Registry repository. Almost 75% of all patches are released before
vulnerability publication, on average this happens 184 days prior. NuGet.org patches are released the earliest
compared to vulnerability publication.

RQ2: What is the transitive impact of vulnerabilities? We inspect the net impact of vulnerabilities by measuring
the number of artifacts that are affected, both directly and transitively. As part of this, we also analyze the length of
transitive dependency chains that propagate such vulnerabilities.

1 MATCH (v:Vulnerability {snyk_id:'DUMMY -ID'}) -[:AFFECTS|REFERENCES *2]->(l0:Artifact)

2 MATCH p = (l0) <-[:DEPENDS_ON *0..6] -(a:Artifact)

3 WITH length(p) AS depth , a.LibraryId AS lib , a.UniqueId AS uid

4 WITH depth , count(DISTINCT lib) AS lib_count , count(DISTINCT uid) AS art_count

5 RETURN depth , lib_count , art_count

Listing 2. Cypher query used to obtain values IArt,n and ILib,n for a single vulnerability

In order to do so, we query our data set and for each vulnerability extract the number of unique affected libraries
(ILib,n) and unique affected artifacts (IArt,n) per level 𝑛, where the level captures the length of the transitive chain.
IArt,0 (𝑣) therefore corresponds to the number of artifacts directly affected by vulnerability 𝑣 , whereas IArt,1 (𝑣) represents
the number of artifacts directly depending on a level zero artifact for the same vulnerability. As described in Section
5.2, the detection of dependencies is executed in an underapproximation mode (M<). Due to performance reasons, we
cut off our analysis at a depth of six. Listing 2 presents an example query that is used to obtain values for a single
vulnerability in the Maven Central dependency graph, with the cutoff being specified as the recursive multiplicity of
the DEPENDS_ON relation in line 2.

In Figure 8 we illustrate the transitive impact of vulnerabilities. We say a vulnerability 𝑣 has impact on level 𝑛 if it
affects at least one library on that level, ie. ILib,n (𝑣) > 0. We observe that vulnerabilities in the Maven Central Repository
have the most impact on the first six levels. Here, more than 70% of all vulnerabilities have an impact on the first level,
and roughly 50% have an impact on the sixth level. For the NPM Registry these values are significantly lower. The
Manuscript submitted to ACM



Analyzing Vulnerability Impact 15

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Level

A
m
ou

nt
of

vu
ln
er
ab
ili
tie

s Maven
NPM
Nuget

Fig. 8. Amount of vulnerabilities with impact per level

Maven Central NPM Registry NuGet.org
𝑋 𝑋̃ IQR 𝑋 𝑋̃ IQR 𝑋 𝑋̃ IQR

Level 0 0.5 0.2 0.5 0.3 0.1 0.3 0.8 0.7 0.9
Level 1 88.5 1.2 18.4 26.9 0.0 2.2 6.9 0.0 0.0
Level 2 587.2 1.4 75.8 35.9 0.0 1.0 8.6 0.0 0.0
Level 3 1,878.0 1.0 190.7 31.9 0.0 0.2 8.3 0.0 0.0
Level 4 4,200.0 0.5 353.8 25.8 0.0 0.0 9.3 0.0 0.0
Level 5 7,649.3 0.2 444.6 20.2 0.0 0.0 4.1 0.0 0.0
Level 6 11,645.9 0.0 634.3 15.5 0.0 0.0 2.0 0.0 0.0

Table 2. Mean, median and IQC values for IArt,n per 100,000 total
artifacts for each level and repository

former one being not more than 60% and the latter just over 15%. Finally, vulnerabilities in NuGet.org exhibit the least
impact of all three repositories, merely 3% have an impact on level six.

As we cut off our automated analysis at level six, it does not reveal any information about the total length of impact
chains in the data set. Therefore, we conducted a structured manual analysis on the most impactful vulnerabilities,
which are likely to exhibit the longest impact chains. However, it must be noted that there may be longer chains for
less impactful vulnerabilities, therefore our results may only be seen as an indication for the general trend in terms of
impact chain length. Table 3 reports the maximum chain length LMAX that we observed during manual inspection for
each repository. The longest chain is comprised of 38 artifacts and is part of the Maven Central repository. The impact
chains for the NPM Registry and NuGet.org proved to be shorter, here we observed maximum lengths of 15 and 13,
respectively.

Repository Target Library CVE Identifier Severity LMAX

Maven Central log4j:log4j CVE-2019-17571 Critical 38
NPM Registry lodash CVE-2019-1010266 Medium 15
NuGet.org log4net CVE-2018-1285 High 13

Table 3. Vulnerability with maximum impact chain length seen during manual analysis

Apart from the length of impact chains, we also investigate the IArt,n values for each level 𝑛. In order to enable
a comparison between repositories, we normalize those values per 100,000 total artifacts for each repository. Table
2 presents the mean (𝑋 ) and median (𝑋̃ ) number of affected artifacts per level, as well as the corresponding IQR.
Interestingly, we observe turning points for 𝑋 at levels two and four for the NPM Registry and NuGet.org, while the
values for Maven Central exhibit continuous growth until level six. This matches both our observation of very long
impact chains in Maven Central (cf. Table 3) and the large number of Maven vulnerabilities with impact on level six or
higher (cf. Figure 8).

However, the direct comparison between Maven Central and NuGet.org reveals a stark contrast in vulnerability
impact: While in NuGet.org on average only 2 artifacts per 100,000 are affected by vulnerabilities on level 6, the
corresponding values for Maven Central is almost 6,000 times larger.
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Vulnerabilities in the Maven Central repository affect the most artifacts and do so via the longest transitive
dependency chains. On the other hand, NuGet.org vulnerabilities have the shortest transitive impact chains,
and affect less than 0.02% the number of artifacts compared to Maven.

RQ3: How long does it take developers to upgrade vulnerable direct dependencies? We analyze how long it
takes library maintainers to upgrade a vulnerable direct dependency, as compared to the vulnerability’s publication. We
are especially interested in finding out whether the publication of vulnerabilities triggers an immediate response from
library maintainers. Since maintainers are generally not involved in the disclosure process, we do not compare the
time of upgrades to vulnerability disclosure dates here. Furthermore, we present information on the relative number of
affected libraries per repository and investigate the upgrade ratio for such libraries.

Algorithm 1 UpgradeDurationAnalysis

1: for v← VulnerabilitiesWithPatch do
2: AffectedLibs← getLibrariesUsingArtifactAffectedBy(v)
3: for lib← AffectedLibs do
4: Report← LibraryReports.get(lib)
5: Report.𝑛𝑉𝐷 += 1
6: FirstNotAffected← getFirstReleaseNotAffectedBy(lib, v)
7: if FirstNotAffected != None then
8: 𝛿𝑃𝑈 ← FirstNotAffected.ReleaseDate - v.PublishedAt
9: Report.updateMeanDuration(𝛿𝑃𝑈 )
10: else
11: Report.𝑛𝑈𝐷 += 1
12: end if
13: end for
14: end for

For each unique library identifier, our analysis collects the number of total vulnerable dependencies (𝑛VD), as well
as the number of vulnerable dependencies that have not been upgraded for this library, which we call unpatched
dependencies (𝑛UD). Based on that, we define the patching ratio 𝑟P for each library as 𝑟P = 1 − 𝑛UD

𝑛VD
. Furthermore, for

every library that has at least one patched vulnerable dependency, we extract the mean duration between vulnerability
publication and dependency upgrade, 𝛿PU, in seconds. This methodology is illustrated in Algorithm 1.

Repository # Libraries Relative # Libraries E[𝑛VD] E[𝑟P] E[𝛿PU] in Days

Maven Central 99,162 28,97% 8.7 38% -192
NuGet.org 3,144 1.16% 2.8 40% -212
NPM Registry 102,666 7.96% 3.4 32% -503

Table 4. Key characteristics of the analysis results for RQ3 per repository

Table 4 summarizes the main characteristics of our results for this RQ. It contains not only the total but also the
relative amount of libraries that have ever been affected by direct vulnerable dependencies. Here, we observe significant
Manuscript submitted to ACM
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differences between repositories: While in Maven Central more than a fourth of all libraries are affected, in NuGet.org
this value is just above 1%. In addition to that, Maven’s average 𝑛𝑉𝐷 value of 8.7 is notably larger than the values for
the NPM Registry (3.4) and NuGet.org (2.8). Despite these differences, the average values for 𝑟P are rather similar for all
three repositories, with values ranging from 32% to 40%. On average, vulnerable dependencies are patched up to 503
days before vulnerability publication (NPM Registry).

Upon investigating the distribution of patching rates, which is illustrated in Figure 9, we made an interesting
observation: Library maintainers tend to either upgrade all vulnerable dependencies (𝑟𝑃 = 100%), or none of them
(𝑟𝑃 = 0%). We observed partial upgrades for only 17% (Maven Central) to 1% (NuGet.org) of all libraries.

The distribution of all 𝛿PU values is plotted in Figure 10. As we expected, most values for the NPM Registry are below
-400 days, which matches the low average reported in Table 4. However, in Maven Central and NuGet.org between 10%
and 13% of all values are larger than 400 days, which indicates that a substantial amount of vulnerable dependencies is
upgraded more than a year after the corresponding security advisory was published.

Interestingly, both Maven Central and NPM Registry exhibit a slight peak in the [0; 100) interval, which may indicate
that the publication of a vulnerability prompts some developers to immediately upgrade their dependencies. Another
reason for this observation may be the use of automated tools for vulnerability detection, as mentioned in Section 2.

Vulnerable dependencies affect only 1% of all libraries in NuGet.org, but up to 29% in Maven Central.
Upgrades of vulnerable dependencies usually happen more than 200 days prior to vulnerability publication.
For some libraries, vulnerability publication seems to trigger an immediate dependency upgrade, suggesting
the use of automation.

RQ4: Do developers adhere to published security advisories? Once published, a vulnerability and all artifacts
affected by it are publicly accessible by any software developer. We inspect whether or not developers adhere to those
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public security advisories. In order to do so, we calculate the number of artifacts that use a vulnerable dependency but
were released after the vulnerability’s publication.

1 MATCH (v:Vulnerability) -[:AFFECTS|REFERENCES *2]->(: Artifact) <-[:DEPENDS_ON ]-(l1:Artifact)

2 WITH v.PublishedAt AS publication , l1.UniqueId AS artifact , l1.releaseDate AS release

3 WHERE release > publication

4 RETURN DISTINCT artifact , publication , release;

Listing 3. Cypher query used to obtain data for RQ4

For each such artifact, we compute the number of vulnerable dependencies, for which the respective vulnerability
had already been published at the time of artifact release (𝑛V). Furthermore, for each artifact we calculate the minimum
duration for which those vulnerabilities have been publicly accessible at that time in seconds, which we call 𝛿PR. We
collect the raw data for this analysis by executing the Cypher query presented in Listing 3.

Repository # Artifacts Relative # Artifacts E[𝑛V] E[𝛿PR] in Days

Maven Central 807,200 15,46% 3.3 470
NuGet.org 15,119 0.50% 1.3 155
NPM Registry 2,203,639 16.25% 2.8 431

Table 5. Results of RQ4 per repository

Similar to RQ3, Table 5 presents the total and the relative number of affected artifacts per repository. Furthermore,
the table holds the average values for 𝑛V and 𝛿PR. Here, we observe significant differences between repositories. While
in NuGet.org only 0.5% of all artifacts are affected, in the NPM Registry this value is more than 32 times higher. In
addition to that, affected artifacts in NuGet.org on average have 1.3 vulnerable dependencies with published advisories,
compared to 3.3 and 2.8 vulnerable dependencies per artifact in Maven Central and the NPM Registry, respectively.

The average duration between vulnerability publication and artifact release ranges from 155 to 470 days, which
implies that some maintainers use dependencies known to be vulnerable for well over a year. We further investigate the
distribution of those 𝛿PR values in Figure 11.
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The distribution of values in the NuGet.org repository most closely matches our general expectations. Here, more
than 90% of all artifacts have been released no longer than one year after vulnerability publication, and only 0.8% after
more than two years. In contrast to that, over 20% of all 𝛿PR values for both Maven Central and the NPM Registry are
greater than two years. Compared to NuGet.org, the values for both repositories are distributed more evenly. This may
indicate that in NuGet.org, compared to the other two repositories, security advisories have a more direct influence on
dependency upgrades.

In the NPM Registry, 16.25% of all artifacts are released with dependencies for which public security
advisories are available. This phenomenon also affects Maven Central (15.46%) but has a lesser impact on
NuGet.org (0.5%). On average, affected artifacts have between 1.3 (NuGet.org) and 3.3 (Maven Central) such
dependencies, which advisories being published for up to 470 days (Maven Central).

6 DISCUSSION

In this section, we discuss our analysis results and their implications. We start by pointing out security risks that result
from our findings and go on to derive possible mitigation strategies that may improve the current situation.

6.1 Security Risks

Based on our analysis results presented in Section 5.3, we identify a set of potential threats for software security. We
present this set, which we name T, in Table 6. In the following paragraphs, we highlight the core issues of each member
of the set T, and present empirical evidence found in the analysis results.

Id Name Maven Central NPM Registry NuGet.org

T1 Patch Release after Vulnerability Publication Yes Yes Yes
T2 Excessive Transitive Vulnerability Impact Yes No No
T3 Libraries Keep Vulnerable Dependencies Yes Yes Yes
T4 Publication has no Impact on Upgrade Duration No No Yes
T5 New Releases have Vulnerable Dependencies Yes Yes No

Table 6. Set of all threats T with repositories they apply to

As part of our analysis for RQ1, we found that while most patches are released before vulnerability publication, a
non-negligible amount of over 25% is in fact released afterwards (T1). This implies that for a certain period of time,
software libraries were publicly known to be vulnerable, making them a prime target for exploitation. This threat is
most pronounced for Maven Central (29%) and the NPM Registry (23%), but also applies to NuGet.org (13%).

The propagation of vulnerabilities along transitive dependency chains leads to an exponentially growing number of
artifacts potentially affected and makes it increasingly hard to decide whether vulnerabilities apply to a specific software
artifact (T2). In our results for RQ2, we found that vulnerability impact chains in Maven Central are substantially longer
than in the other two repositories. This is true both on average (cf. Figure 8) and at maximum (cf. Table 3). Furthermore,
the amount of Maven artifacts transitively affected by a vulnerability is over 750 times higher than for the NPM Registry,
and almost 6,000 times higher than for NuGet.org.
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As part of our results for RQ3, we found that between 1.16% (NuGet.org) and 28.97% (Maven Central) of all repository
libraries have at one point been affected by vulnerable direct dependencies. A further classification discovered that, out
of all affected libraries, between 60% and 66% did not upgrade any of those vulnerable dependencies at all (cf. Figure
9). As a result, from 0.7% (NuGet.org) up to 17.4% (Maven Central) of all repository libraries have potentially multiple
vulnerable dependencies that have not been upgraded. This fact poses a major security threat (T3), as consumers of
those libraries may not be aware of the vulnerable dependencies, and do not expect the latest release to be vulnerable.

When analyzing the distribution of upgrade durations for RQ3, we found that the publication of a vulnerability
seems to trigger an immediate dependency upgrade for some libraries in Maven Central and the NPM Registry (cf.
Figure 10). This indicates that some library maintainers may be actively monitoring vulnerability publications, and
respond if needed. However, we found no evidence for the same kind of behavior in the NuGet.org repository, meaning
that vulnerable dependencies may affect artifacts longer than necessary (T4).

During the previous analysis for RQ4 we found that some software artifacts use vulnerable dependencies, for which
the respective vulnerability has been published before the artifact release. This implies that developers did either not
consult or deliberately ignore public security advisories like the CVE list. As a result, consumers of the corresponding
repositories can not even rely on new releases of a library to be vulnerability-free, which may lead to a false sense of
security when upgrading dependencies to the latest release (T5). According to Table 5, this issue affects artifacts in all
three repositories, but is most pronounced for the NPM Registry (16.25% of all artifacts) and Maven Central (15.46%),
while only affecting 0.5% of all artifacts in NuGet.org.

6.2 Mitigation Strategies

As a final contribution of our work, in this section, we present a set of mitigation strategies for maintainers and
consumers of all three repositories, which aim to mitigate the threats presented in the previous section. Table 7 presents
the set of strategies, which we call S, alongside the corresponding threats and the target audience. Most of the strategies
presented here are well-known in software engineering research. However, here we provide justification for their
usefulness, as we link them to threats that we observed based on empirical findings in our dataset.

Id Name Threats Audience

S1 Closely Monitor Vulnerability Publications T1, T4 Maintainers
S2 Employ Bug Bounty Programs T1 Maintainers
S3 Use Tools for Dependency Monitoring T2, T3, T5 Maintainers & Consumers
S4 Check for Vulnerable Dependencies on Release T5 Maintainers
S5 Minimize the Number of Dependencies T2 Maintainer & Consumers

Table 7. Set S containing mitigation strategies derived from T

Threat T1 refers to a substantial amount of library maintainers releasing patches a long time after the corresponding
vulnerability has been published. Furthermore, T4 points out that maintainers of libraries with vulnerable dependencies
do not act upon the vulnerability’s publication. As a result, there are artifacts that are subject to publicly known
vulnerabilities without a patch being available in all three repositories. An easy way of mitigating this risk is to
closely and actively monitor the publication of vulnerabilities (S1), so that maintainers can immediately upgrade the
respective dependency or start implementing a patch, thus reducing the time for which an artifact is vulnerable. There
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are multiple ways to automatically monitor new vulnerability publications. The NVD provides an RSS feed on the
latest vulnerabilities that have been analyzed14, and the MITRE corporation does the same on their Twitter feed15.
Developers may also be informed about vulnerabilities in dependencies by the use of tools for dependency monitoring,
which are regularly updated with the latest set of vulnerabilities. Examples include the services provided by Snyk, as
well as the npm audit command.

While adhering to strategy S1 reduces the time of exposure to published vulnerabilities significantly, it is still
likely to take library maintainers a couple of days or weeks to develop a patch and release it. In an effort to further
reduce this time, and therefore minimize the risk imposed by threat T1, maintainers may encourage members of
the open-source community to find and report security vulnerabilities on their own, thus increasing the chances of
discovering vulnerabilities before their official publication (S2). Such initiatives are often called Bug Bounty Programs

and are already offered by a variety of corporations and institutions, including Microsoft [27] and the U.S. Pentagon
[17]. While for large corporations these programs often include incentives like monetary rewards, smaller groups of
library maintainers may still be able to offer some sort of reward, which may even be an honorable mention in the
library description. It must be noted that both S1 and S2 can only be applied for libraries that are still being actively
maintained, as opposed to libraries that have been discontinued.

Strategy S1 already suggested the usage of automated tools for dependency monitoring, which helps library main-
tainers monitor vulnerability publications. In fact, this strategy also applies to regular repository consumers and has
the potential to mitigate several risks identified in the previous section (S3). As those tools can often be integrated into
a CI workflow, they inform library maintainers about vulnerable dependencies on every commit, making it effectively
impossible to not be aware of their existence. Therefore, the risks imposed by T2, T3 and T5 are reduced substantially.
Furthermore, the usage of automated tools for detecting vulnerable dependencies may result in repository consumers
preferring more secure libraries for their projects. The more consumers show an obvious interest in security, the more
likely library developers are to shift their development focus on security-related aspects.

Due to the larger amount of artifacts being released despite their dependencies being affected by published vulner-
abilities, as implied by T5, strategy S4 encourages library maintainers to inspect all their library’s dependencies on
every release. By establishing a defined process of doing so, the risk of unintentionally using vulnerable dependencies
is effectively eliminated. Ideally, this process is automated by making use of similar tools to the ones discussed for S3.
While maintainers may still intentionally decide to keep vulnerabilities for a given release, this guideline assures that
at least one developer has evaluated the resulting risk and decided that it does not have a critical impact on library
consumers.

The impact of threat T2 is directly correlated to the density of the corresponding dependency graph, and therefore to
the number of dependencies per artifact. Consequently, the impact may be reduced by reducing the average number
of dependencies for each software library (S5). A similar argument can be made for repository consumers, where
the number of potential security threats is directly linked to the number of project dependencies. While it is a rather
simple task to remove redundant dependencies from an application or library, replacing those that are actually used can
only be achieved by implementing the desired functionality from scratch. However, this would be in stark contrast to
the concept of software reuse, which has been proven to be effective. Nevertheless, especially in the NPM Registry,
some of the libraries are small enough to be replaced by a single function definition. Examples include libraries like
array-first, which provides a single function for returning the first 𝑛 elements of an array, or to-capital-case,

14nvd.nist.gov/vuln/data-feeds#RSS
15twitter.com/CVEnew
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which capitalizes a string value. These examples illustrate that in some cases a trade-off between software reuse and
potential security risks must be considered. This has also been observed in a 2020 study on the use of trivial packages
by Abdalkareem et al. [1], where the authors observe that trivial packages make up between 10.5% and 16% of PyPI and
the Npm Registry, despite the fact that up to 72% of such packages to not incorporate any tests. Similarly, Soto-Valero et
al. find that many dependencies in public software artifacts are actually unused, and present a tool called DepClean to
tackle this issue [41].

7 THREATS TO VALIDITY

In this section, we present possible threats to the validity of our work, and how we chose to mitigate them as much as
possible.

Construct Validity. In our analyses for RQ2, RQ3, and RQ4, we investigate metrics that involve vulnerabilities affecting
(transitive) dependencies of a software artifact. It must be noted, that the mere presence of such a vulnerable dependency
does not imply that the vulnerability applies to the artifact. In fact, researchers associated with the FASTEN Project

propose to use method-level call graph analysis to decide whether or not vulnerabilities in dependencies actually
apply to a project [31]. They argue that analyzing vulnerabilities on the package-level leads to false positives, and
therefore wastes development resources, which is also supported by the findings of an empirical study conducted by
Zapata et al. in 2018 [13]. However, the findings of this project are still preliminary and have yet to be implemented for
entire software ecosystems [6]. On the other hand, sometimes vulnerabilities in dependencies can be exploited simply
because the corresponding code is on the classpath, as shown by Lawrence and Frohoff [21]. As our analysis handles
vulnerabilities on the package level, we note that our findings generally have to be considered an overapproximation,
which may be refined by incorporating precise call graph information for each artifact in the future.

Internal Validity. As mentioned in Section 5.2, our algorithm for dependency resolving supports two modes of execution,
yielding either all valid targets (overapproximation) or the most recent valid target (underapproximation). As package
managers only refrain from using the most recent target in case of version conflicts, our analysis results have been
obtained using the latter. Therefore, there might be some dependency paths that have not been counted towards our
results for RQ2, RQ3, and RQ4.

For the threats presented in Section 7 we often assume that not being aware of vulnerabilities in dependencies is
a major reason for not performing an upgrade or not releasing a patch. However, there may in fact be other reasons
involved in this decision, for example, libraries may not prioritize fixes, or maintainers may decide that vulnerabilities
do not apply to their specific usage scenario. Further investigations need to be performed in order to identify those
reasons and their relevance in this context.

We rely on the correctness of the Synk dataset we use throughout the analysis. As the dataset is manually verified in
a structured process and includes official data from the NVD, we think we can safely assume the data to be correct.

External Validity. We used vulnerability data that is the intellectual property of Snyk Ltd. and can, consequently, not
be published. Therefore, others can not reproduce our analysis, as we are only able to make our tools for generating
dependency graphs publicly available. We chose this approach as the data provided by Snyk both contains more
vulnerabilities than sources like the NVD, and is manually verified to be correct. We strive to include open vulnerability
sources and repeat our analysis in the future. In the meantime, interested researchs may of course obtain the vulnerability
data through the same official channels we used.
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Conclusion Validity. As many of our analysis metrics imply, artifacts from the NuGet.org repository seem to be somehow
less affected by vulnerabilities compared to the NPM Registry and Maven Central. While this may be an indication of
better processes and awareness by the respective developers, it may also be a result of the size and popularity of the
repository. Out of the three repositories observed in this work, NuGet.org has both the least amount of artifacts and the
fewest downloads per week, which may lead to fewer vulnerabilities being introduced, and fewer vulnerabilities being
discovered. While we normalized our measures to include the size of repositories where applicable, further analysis is
necessary to identify the effects of repository size onto the behavior we observed.

8 RELATEDWORK

Dependencies between software artifacts for certain software systems have been the topic of a variety of publications.
Furthermore, many researchers have analyzed the impact and lifecycle of software vulnerabilities, as well as possible
mitigation strategies. In this section, we present the most prominent examples of related work.

In [4], Benelallam et al. present a snapshot of the Maven Central dependency graph as of September 6, 2018. The
authors implemented a tool calledMaven Miner, which processes artifacts from the Maven Central repository, calculates
their dependencies and creates a graph representation that is stored in a Neo4J graph database. For our work, we
initially used the Maven Miner to gather an up-to-date version of the dependency graph, but failed to do so in time (cf.
Section 4.3).

In 2018, Decan et al. performed an empirical study on the impact of software vulnerabilities in the NPM Registry
[10]. Based on 700 vulnerabilities, which the authors manually gathered from Snyk.io, they computed a set of affected
package releases using the online service at libraries.io. Among other things, the authors observed an ever-growing
number of vulnerabilities and affected package releases over time, with more pronounced rates of growth for medium
and high severity vulnerabilities. A similar observation is made for commercial applications by Mike Pittenger in [35].
Decan et al. also analyzed the time it takes package maintainers to discover vulnerabilities, and report that the majority
was found in packages older than 28 months. Similar to this work, the authors found that most vulnerabilities are
patched before their publication, but there "is still a non-negligible proportion of vulnerabilities that take a long time to be

fixed." [10].
Bavota et al. performed an in-depth study on 147 Java projects of the Apache ecosystem in 2015 [3], in which they

analyze how and why the dependencies between projects are upgraded, left unchanged, or dropped. The authors
evaluate the influence of the client project size, the number of LOC changed in the library project, the number of bugs
fixed, and other factors on the upgrade behavior. They find that substantial changes to the library project, especially
bug fixes, are adopted earliest, which matched the authors’ observations in developer communications (eg. via mailing
lists). Similarly, a 2021 empirical study conducted by Chinthanet et al. analyzes the adoption of vulnerability-related
fixes in NPM projects on GitHub [7]. By inspection of 231 package-side fixing releases, the authors find that such releases
consist of up to 86% code unrelated to the actual fix, and that quick availability of fixes does not ensure a fast adoption
process by clients. Nevertheless, a 2019 study by Gkortzis et al. finds evidence for an inverse correlation between code
reuse and the number of vulnerabilities, which seems to indicate that “[...] a high reuse ratio is associated with a lower

vulnerability density“ [16].
A 2017 study by Kula et al. analyzes the dependency upgrade behavior of software developers in detail [20]. In an

empirical study, the authors collected 4,600 Java projects that are using Maven dependencies from GitHub. They found
that while developers heavily rely on third-party libraries, they do not often upgrade their dependencies and tend to
stick to popular old releases. An additional case study revealed that Awareness Mechanisms like Release Announcements
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and Security Advisories have a mixed influence on developers. The likelihood of upgrading a library dependency is
observed to be decreasing with increasing migration effort. A subsequent interviewing process revealed that almost 70%
of all developers were unaware of a vulnerable dependency in their project. The other 30% named mostly project-specific
reasons for which a dependency upgrade was not performed or not prioritized, eg. because the developers found that it
does not actually apply to the project. This intuition is confirmed in a 2018 study conducted on 60 NPM projects by
Zapata et al., which finds that as much as 73.3% of such vulnerable dependencies may not actually apply to a project,
concluding that package-level vulnerability analysis leads to significant overapproximation [13].

In 2018, Jukka Ruohonen published an analysis on vulnerabilities in Python packages that target web development
[39]. The base data is collected from the Python Package Index (PyPI) and the Safety DB16, a curated list of vulnerabilities
in Python packages. The author argues that, while often used in scientific work, the CVE list of vulnerabilities does often
not include smaller libraries or lesser-known exploits. A subsequent analysis of packages related to web development
showed that most vulnerabilities in the data set are of mild severity, with Input Validation and XSS being the most
common attack vectors. A final conclusion states that a more meaningful analysis would have to take the dependencies
between artifacts into account.

Ponta et al. [36] present a novel approach to detect whether or not a software artifact is affected by a vulnerability.
Instead of consuming metadata files (eg. pom.xml), their tool Vulas combines static and dynamic analyses to decide
whether or not the actual vulnerable code construct (eg. a method) is reachable from the analyzed artifact. This way, the
number of false positives is reduced and the intuition of vulnerabilities not applying in certain contexts, as reported by
Kula et al. in [20], is formalized. In their latest publication [37], Ponta et al. report on the current state of Vulas, and
perform a comparative study on 300 enterprise projects. Compared to OWASP Dependency Check (OWASP DC), their
tool identified about 1800 additional true positive findings, whereas almost 89% of 17000 vulnerabilities only reported
by OWASP DC turned out to be false positives.

In their 2016 publication, Alqahtani et al. use semantic web technologies to establish links between sources on software
vulnerabilities and source code repositories [2]. They argue that traditionally, information sources on vulnerabilities
and project metadata are heterogeneous, which hinders the estimation of vulnerability impact and artifact security.

Shahzad et al. published their study on the life cycles of software vulnerabilities in 2012 [40]. They obtained a sample
of 46,310 vulnerabilities from different sources, including the NVD, and present an analysis regarding multiple data
dimensions. Based on that, they extract association rules regarding the patching and exploitation behavior, which are
then used for detecting patterns in the data set.

In their 2018 publication, Pashchenko et al. argue that existing tools for vulnerable dependency detection often
produce false positives, which in turn lead to inefficient development processes, especially in commercial software
development [32]. The authors state that dependency scopes are often not evaluated in existing approaches, as well
as halted dependencies. The paper presents an analysis approach that is able to detect vulnerable dependencies for
Maven artifacts while improving on the deficiencies mentioned above. In particular, the authors use heuristics based
on the average release time of a library in order to identify halted dependencies. Instead of automated vulnerability
aggregation, the authors rely on manual identification of vulnerable code for each vulnerability. Finally, Pashchenko et
al. conduct a study of their approach on 200 open source Maven libraries. They find that 14% of all dependencies in
their sample are halted, with 1% of them being affected by known vulnerabilities. They conclude that employing their
approach helped to reduce the time developers have to spend on false positives in vulnerable dependency detection.

16github.com/pyupio/safety-db
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Building on their previous work, in 2020 Pashchenko et al. present Vuln4Real, a methodology for overcoming the
inaccuracies of traditional approaches for vulnerable dependency detection [33]. They implement the methodology for
the Maven build system and perform an empirical study on 500 libraries. The authors find that 80% of all vulnerable
dependencies can potentially be fixed by a direct dependency upgrade. Furthermore, Vuln4Real decreases the number
of false positives by 27%, thus effectively saving developers the time they would otherwise have to spend on analyzing
an inaccurate alert.

In 2020, Pashchenko et al. published a qualitative study on the security implications of developer decisions regarding
dependency management [34]. The authors interviewed a total of 25 developers from different enterprises to investigate
the trade-off between functional and security-related concerns. Their results imply that selecting an appropriate
dependency is a complex task, and security concerns are often neglected in these scenarios. Furthermore, the authors
observe that patches are more likely to be adopted by developers if they are not bundled with functional changes.

9 CONCLUSION

Our work presented three core contributions, that mitigate the resulting threats to application security and foster
a general understanding of how vulnerability patches and dependency upgrades are performed in Maven Central,
NuGet.org, and the NPM Registry.

At first, we designed and implemented a distributed application that aggregates the dependency graphs for artifacts
from all three repositories. An additional post-processing step leverages a Snyk data dump to annotate information
about CVE software vulnerabilities to the graph. By executing the application we obtained a vulnerability-enriched
dependency graph for Maven Central (as of September 2018), NuGet.org, and the NPM Registry (both up-to-date as of
June 2020). It contains a total of 19 million software artifact nodes, which belong to 1.8 million libraries and have 4.9
million unique dependency specifications, with 5378 vulnerabilities being annotated.

Our second contribution is a detailed analysis of the data that we previously generated. It was conducted based on
four different research questions and comprised the creation of applications for data processing as well as interactive
data visualizations for manual data exploration.

We found that a substantial amount of vulnerabilities is still unpatched (over 25%), but existing patches are often
released long before vulnerability publication. We also observed that vulnerabilities may transitively affect an artifact
with a transitive depth of up to 25, making it hard to manually discover a potential security risk. In addition to that, our
analysis revealed that up to 20% of all libraries (Maven Central) in a repository have been affected by direct vulnerable
dependencies, and 60% of those libraries did not upgrade any of them. Interestingly, while most dependency upgrades
happen long before a vulnerability is published, the act of publishing does seem to trigger an immediate dependency
upgrade for some maintainers in Maven Central and the NPM Registry, thus indicating that they may be actively
responding to security advisories.

Our third and final contribution is a set of observed security threats and mitigation strategies, which we derived
from the analysis results described above. These strategies are meant to mitigate the security threats that result from
our findings, thus potentially increasing application security.

With each of our contributions, we aim to improve the current state-of-the-art regarding the development of patches
and the upgrades of vulnerable dependencies, thus ultimately reducing the number of exploitable security flaws in
software applications. Our findings provide the foundation for a common understanding of the topic and indicate
how to tackle some of the problems that we pointed out. Our results may be extended by incorporating additional
repositories or data sources.
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