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Abstract 
Increasingly mobile device users are being hurt by security or 
privacy issues with the apps they use. App developers can 
help prevent this; inexpensive security assurance techniques 
to do so are now well established, but do developers use 
them? And if they do so, is that reflected in more secure apps? 
From a survey of 335 successful app developers, we conclude 
that less than a quarter of such professionals have access to 
security experts; that less than a third use assurance tech-
niques regularly; and that few have made more than cosmetic 
changes as a result of the European GDPR legislation. Reas-
suringly, we found that app developers tend to use more as-
surance techniques and make more frequent security updates 
when (1) they see more need for security, and (2) there is se-
curity expert or champion involvement. 

In a second phase we downloaded the apps corresponding to 
each completed survey and analyzed them for SSL issues, 
cryptographic API misuse and privacy leaks, finding only one 
fifth defect-free as far as our tools could detect. We found 
that having security experts or champions involved led to 
more cryptographic API issues, probably because of greater 
cryptography usage; but that measured defect counts did not 
relate to the need for security, nor to the use of assurance 
techniques. 

This offers two major opportunities for research: to further 
improve the detection of security issues in app binaries; and 
to support increasing the use of assurance techniques in the 
app developer community. 

1. Introduction 
Increasingly software security and privacy are becoming ma-
jor problems for society. Almost every day we hear of new 
attacks and privacy problems, and increasingly they are af-
fecting not just large companies, but everyone [46]. While 
there are many ways to address these issues, clearly software 
developers have a vital role to play in creating services and 
applications that enforce security effectively1.  

 
1 Throughout this paper we refer to ’developers’ meaning all those involved 
with software development: programmers, testers, project managers, and prod-
uct owners. 

The software industry has developed a range of inexpensive 
security assurance techniques for software developers 
[9,45,51] and some teams even use formal secure develop-
ment lifecycles to pull them together [55]. However, though 
many developers are using those assurance techniques, others 
are not. Factors such as lack of motivation, pressures to do 
other work, lack of access to learning and support, or sheer 
ignorance of the need, all act as barriers to adoption [5,32]. 
Some development teams may have access to security experts 
to help them; others may have little or no practical knowledge 
of software security. In some cases, this may not matter—if 
the code has no security or privacy implications—but in oth-
ers it may harm a range of stakeholders, from software users 
to organization senior management. 

In this work we investigate how big a problem this may be in 
practice. Our first research question was: 

RQ1: To what extent, and how, does a perceived need for 
security and privacy lead to security-enhancing activities and 
interactions in the development team? 

To begin to address this question2, we chose a specific set of 
software developers to investigate: Android application de-
velopers. Our reasons for choosing these were twofold: 

1. The research team has considerable experience in An-
droid development security research [2,33] 

2. The Android ecosystem provides access to both devel-
opers and the software developed, along with an indica-
tion of application usage. 

Accordingly, we carried out an online survey of professional 
Android developers, asking for details of their security prac-
tices and interactions. Our key findings from statistical anal-
ysis of the 330 completed and accepted surveys3 are as fol-
lows: 

• No more than 22% of Android app developers have regu-
lar access to security professionals; 

2 RQ1 was modified to include ‘how’ and ‘perceived’ following feedback on 
the paper. 
3Assuming the sample is representative of Android app developers. See Sec-
tion 5.1. 



• Less than 53% of them have used any of the basic assur-
ance techniques; less than 30% use any regularly; and se-
curity updates for apps generally happen less than once a 
year. 

• Less than 15% of them have made more than cosmetic 
changes as a result of the new GDPR legislation. 

• Android app developers’ use of assurance techniques is 
positively correlated with the perceived need for security, 
the involvement of security experts or champions, and the 
security expertise of the developers;  

• The reported frequency of app security updates is posi-
tively correlated with the perceived need for security, the 
security expertise of the developers, and the developers’ 
use of assurance techniques. 

In a second phase, we investigated how these aspects of the 
development process were reflected in objective app security 
outcomes. Our research question for this phase was: 

RQ2: To what extent do the need for security, the involve-
ment of specialist roles, and the use of assurance techniques 
in a development team lead to fewer security defects? 

We analyzed the corresponding Android applications created 
by each developer and matched the findings to the question-
naire results, concluding that: 

• There was no correlation found between the perceived 
need for app security, nor the use of assurance techniques, 
and the defect count of the resulting app; and 

• Surprisingly, the involvement of security professionals 
and ‘security champions’ is correlated with higher cryp-
tographic API defect counts. 

This paper is structured as follows. Section 2 explores related 
work, including a discussion of assurance techniques; Section 
3 describes the survey design, participant recruitment ap-
proach, analysis plan, survey trials and limitations; Section 4 
describes the same for the app binary analysis; Section 5 ex-
plores both the survey and app analysis results; Section 6 ex-
plores the implications of these results; and Section 7 sum-
marizes the main learning points and conclusions. 

2. Related Work 
In this section, we discuss related work in three key areas: 
ways of finding security and privacy flaws in otherwise be-
nign mobile apps; research work into developers’ secure de-
velopment behavior; and findings on the important developer 
assurance techniques. 

2.1. Security and Privacy in Mobile Apps 
The introduction of App Stores, that act as an intermediary 
between developers and consumers, has required each app 
store provider to find ways to detect rogue applications and 
rogue application developers. This has led to research into 

ways of analyzing application binaries to detect hostile be-
havior. Enck et al. [18], for example, used a decompiler to 
analyze a range of popular applications, finding many privacy 
issues though no security misbehavior. Glanz et al. [22] in-
spected obfuscated apps to detect repackaged apps—benign 
apps that have been modified and re-uploaded to app stores. 
Reyes et al. [39] explored children’s app binaries, finding 
many violations of US privacy law.  

However, only more recently has there been much investiga-
tion into the problems of benign apps that may have security 
or privacy flaws. This may be due partly the difficulty of tak-
ing action: Google Play does not have the remit of enforcing 
better security [29] and the app developers may not wish to 
do so. But with the increase of interest in security issues [46], 
researchers are now taking a variety of approaches to inves-
tigate. 

Li et al. [28] provide a literature survey over the vast amount 
of research in the field of static program analysis for Android 
including an overview of used tooling and methodology. The 
most prominent works in the area are FlowDroid by Arzt et 
al. [4], which is able to find privacy leaks by inspecting illicit 
information flow; IccTA by Li et al. [27], which extends 
FlowDroid to account for inter-component privacy leaks; and 
MalloDroid by Fahl et al. [20], which detects improper use of 
transport layer security in apps. 

As Android apps become increasingly polyglot with the use 
of hybrid app frameworks and native libraries, in recent work, 
analyses over these language boundaries have been increas-
ingly in focus. Bai et al. [7] inspected apps which use the Ja-
vaScript bridge communication scheme to construct leaks un-
detectable by previous approaches. Wei et al. [50] provide 
support for information leak tracking through the Java and 
the native part of an app helping to find information leakage 
with could not be detected with Java-only-based approaches. 

Another important area of investigation is the security of the 
interaction of apps with cloud environments. Zuo et al. [58], 
for example, found by inspecting apps from Google Play that 
many of the used cloud services are vulnerable and may leak 
user data—an observation previously made by Rasthofer et 
al. [38]. 

2.2. Developer Security Behavior 
A few teams have investigated the underlying causes behind 
software security problems. Oliveira et al. [32] used psycho-
logical manipulation to explore what caused developer vol-
unteers to include vulnerabilities in software, finding two 
main causes: developers’ focus on ‘normal cases’ and a lack 
of priority for security. Assal and Chiasson [5] surveyed 123 
North American developers, finding their respondents moti-
vated to produce secure code—once the implications and 
possible damage to stakeholders are understood—but often 
prevented by lack of organizational and process support. 



Senarath and Arachchilage [42] used a task given to program-
mers to explore issues related to user privacy; their findings 
were that it was difficult to understand such requirements and 
to translate them into engineering techniques. 

Others have investigated the use and adoption of security–
focused code analysis tools. Xie et al. [57] explored the im-
pact of one such tool, finding that even when creating secure 
code is relatively easy developers still need motivation to 
make the needed changes. Witschey et al. [56] surveyed de-
velopers about their adoption of such tools, finding that the 
most important factor was seeing peers using them. 

Several researchers have investigated the process of updating 
software when security faults are detected. Derr et al. [15] in-
vestigated how Android app developers keep library versions 
up to date, surveying app developers and analyzing of app 
binaries. They found that it was often possible to solve vul-
nerabilities by library updating without changes in code, but 
that frequent backward incompatible changes and incorrect 
Semantic Versioning in libraries currently make such updates 
difficult. Others investigated to what extent the fixes were 
necessary: Nayak et al. [30] found that less than 15% of 
known vulnerabilities were actually used in attacks, suggest-
ing an opportunity for a more nuanced approach than just fix-
ing everything. Vaniea and Rashidi [49] used a survey of 307 
users to analyze the effectiveness of the update procedure. 
They derived advice for developers, including making it easy 
to find documentation, and planning a ‘recovery path’. 

Other researchers have investigated security requirements, 
especially related to privacy. Türpe [47] found a range of re-
search related to security requirements, especially Threat 
Modeling techniques, but no agreement on terminology or 
approach. 

2.3. Developer Assurance Techniques 
An important approach to improving software quality has 
been changes to development processes. This may be through 
a Secure Software Development Lifecycle, a prescriptive set 
of instructions to managers, developers and stakeholders on 
how to add security activities to the development pro-
cess [55]; or by empowering the developers to make their 
own decisions about how to achieve security [53]. 

Particularly important is the need to align security goals with 
business needs [10,51]. Though much work has been done to 
support evaluating security problems in terms of risk and im-
pact [47], identifying the need for security experts to be busi-
ness negotiators and evangelists [23], there has been little at-
tention to developer interactions with other stakeholders on 
security. 

The specific techniques and approaches used by developers 
depend, of course, on their environment and constraints. 
There are more than twenty identifiable assurance techniques 

in regular use today, differing significantly in cost effective-
ness, though there are combinations that are typically used 
together [45]. In particular one can identify a set of about five 
‘entry level’ assurance techniques that are widely used and 
can be introduced at relatively low cost [51]. In terms of prac-
tical support for developers, a recent book ‘Agile Application 
Security’ by Bell et al. [9] provides guidance, a discussion of 
tools and detail on a range of assurance techniques. 

2.4. Related Work Summary 
Though there has been considerable work done on identifying 
practical assurance techniques and tools for security, and 
some work on motivating developers to use them and inves-
tigating reasons for vulnerabilities, there has been little or no 
work investigating whether the need for security does in prac-
tice correlate with better practices, and result in better secu-
rity. 

In this paper we make a start at that investigation. 

3. Survey Methodology 
We conducted an online survey of Google Play Android de-
velopers in May 2019, receiving 345 complete responses. 
This section provides a detailed overview of our methodol-
ogy, with the goal of making our research plan both transpar-
ent and reproducible, to allow readers and future researchers 
to better assess our contribution. Figure 1 summarizes the 
study procedure. 

3.1. Survey Questionnaire Structure 
We asked our respondents to answer questions about their 
Android application development behavior and context rele-
vant for application security and privacy, and a set of demo-
graphic questions. Although this might have led to self-re-
porting and social desirability bias, we considered this ap-
proach the best practical approach to address the research. 
We implemented the questionnaire in Qualtrics [37], and de-
veloped it using an iterative process.  

 
Figure 1: Study Procedure 
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Appendix B contains the full list of questions. In summary, 
we asked respondents: 

• Whether they worked in a team, and if so their role and 
the team size; 

• The Android development environments they used; 

• The number of recent releases for their most frequently 
updated app, and the proportions of updates addressing 
each of new features, library updates, security and privacy 
issues; 

• Their evaluations of the importance of security and of pri-
vacy, both implicitly and for sales; 

• Whether they receive support from security professionals 
or internal security champions, and if so, the nature of that 
support; 

• What events had led to recent changes in security;  

• Which secure development practices they used, and to 
what extent; 

• How long they had been programming, both generally 
and with Android;  

• How many apps they had developed, and whether it was 
their primary job; and 

• Demographic information about gender, language, and 
country of residence. 

Definitions: In the questions, ‘recent’ was defined as the pre-
vious two years, and ‘security champion’ to be a non-expert 
who takes a particular interest in security [8]. We asked de-
velopers with more than one app to provide answers for the 
most frequently updated one. 

Secure Development Practices: The questions about secure de-
velopment practices asked specifically about five of the most 
frequently-used assurance techniques [45,51], as follows: 

Threat  
Assessment 

Working as a team to identify actors and po-
tential threats; following this up with risk as-
sessment and mitigation decisions. 

Configura-
tion Review 

Keeping components up-to-date using com-
ponent security analysis tools to the tool-
chain. 

Automated 
Static  
Analysis 

Using code analysis tools to identify certain 
categories of security vulnerability. 

Code  
Review 

Having other programmers or security ex-
perts review code for security problems. 

Penetration  
Testing 

Having external specialist security testers 
identify flaws. 

Question Wording: All the questions about security processes 
were worded as questions of fact, rather than of future inten-
tions as in some security surveys [16], to reduce the impact 
of desirability biases. 

Omissions: We considered asking about code analysis tools, 
since these are of particular interest to researchers. However, 
static analysis is only one of the five assurance techniques 
considered, and investigating all the techniques would have 
made the questionnaire unacceptably long without contrib-
uting to answers for the research questions.  

3.2. Survey Pre-Testing 
After developing an initial questionnaire, we conducted a set 
of pre-tests to glean insights into how survey respondents 
might interpret and answer questions, and how long they 
might take to complete the survey, as follows. 

Expert Review: After developing and revising a first version 
of the survey questionnaire, we asked an experienced usable 
security and privacy researcher with survey expertise, who is 
not part of the research team, to review our survey question-
naire and evaluate question wording, ordering, and bias. Ex-
pert reviewing is a method that supports identifying questions 
that require clarification and uncovering problems with ques-
tion ordering or potential biases [36]. Following the expert 
review, we improved the wording of several questions, and 
changed the survey software configuration to randomize the 
order of answers and questions wherever this was possible. 

Face-to-face Testing: To test our survey questions under real-
istic conditions, we then identified four local Android devel-
opers who were not previously involved in the research pro-
ject, and asked each to complete the survey while discussing 
it with a researcher. As a result, we modified the wording of 
two questions and added one. We also noted that responses 
from those who had produced only simple apps were not in-
teresting from a security viewpoint, and accordingly modi-
fied our criteria for invitations to only invite developers of 
‘successful’ and ‘maintained’ apps: ones that had received 
more than 100 downloads and at least one update. 

Pilot Survey: To further test the questionnaire, we ran a set of 
pilot surveys with Android developers drawn from the same 
invitation list as the main survey (Section 3.4), inviting 5000 
and gaining 30 completed entries. Participants of the pilot 
were excluded from the full survey. 

We used the results to check that the number of drop-outs 
during the survey was acceptable; it was, since of those who 
completed the first page of questions, only 21% dropped out 
later in the survey. In the pilot questionnaire we used a text 
field for developers to answer what changes they had made 
as a result of GDPR; we coded the pilot responses, and pro-
vided the most frequent answers as ‘tick boxes’ in the final 
survey. 



The results also helped focus and plan our analysis of the 
data.  

Specifically, we identified the following additional research 
questions to help scope the problem of supporting develop-
ers: 

RQ3 What proportion of Android developers have access to 
security experts, and  
RQ4 To what extent do Android developers actually use as-
surance techniques? 

3.3. Calculation of Required Sample Size 
We used Fowler’s guidance [21], identifying the smallest 
subgroups for which we wanted data, using the pilot data to 
estimate the proportion of these, and making the sample size 
large enough to get significant data from these groups. The 
key subgroups were those developers working with security 
professionals, and those using assurance techniques; and we 
chose to get between 50 and 100 in each group to give typical 
sampling errors on data for each subgroup of between 4% and 
15%. Based on the pilot data, therefore, we calculated a target 
sample size of 310, requiring us to send 55,000 invitations. 

3.4. Recruitment 
We invited only registered Google Play developers. From 
January to February 2019 we crawled the details’ pages of 
3,608,673 (2,087,829 free and 1,520,844 paid) Android ap-
plications from those published in Google Play. For all apps, 
we stored their last update time, name, developer data and 
download counts. 

Overall, we identified 312,369 developer accounts that match 
the 100+ downloads and update requirements in Google Play. 
The number of apps published by a single developer account 
in that sample ranges from 1 to 3,302 with a median of 2. 
From these 312,369 developer accounts, we selected a ran-
dom sample of 55,000, and sent a single invitation email to 
each to ask them kindly to support our research. Of the in-
vited 55,000 participants, 605 started and 345 completed the 
survey. Ten of the invited developers reached out to us via 
email. None complained about being contacted; three asked 
to be removed from the mailing list; the remainder provided 
various reasons for not completing the survey, including two 
who noted the security questions and stated that their apps 
had no security aspects. 240 took the opportunity to leave 
their email address in the survey questionnaire for us to send 
them the results of this work. 

3.5. Filtering Invalid Results 
In psychological surveys, a common stratagem is to ask a 
question twice, once negated. One can then filter out mean-
ingless responses (or use them to calculate a “self-con-
sistency” score for the survey). Since our survey was asking 
facts rather than personality, we concluded that this would be 
contrived and irritating to the respondents. Instead we looked 

at response times, experimented to find a minimum time that 
a participant might be expected to take to complete the sur-
vey, and filtered out the few (10) surveys that had taken less 
than that minimum time to complete.  

3.6. Survey Statistical Analysis Plan 
This paper uses four forms of statistical analysis: 
1. Population analysis, to explore how well our sample cor-

responds to the larger population; 
2. Graphical analysis, to show the nature of the data; 
3. Confidence limits for proportions in the wider population 

based on proportions in the sample; and 
4. Correlation analysis, to identify relationships between 

different data items.  

We defined the statistics scores and outline analysis methods 
before collecting the main survey data, as required for re-
search best practice [11,12]. For analysis, we used Python 
statistical packages, including Pandas, Statsmodels, and Sea-
born, in Jupyter Notebooks [25]. 

Linear Analysis for RQ1: To address RQ1, we defined scores 
based on each respondent’s survey answers: some scores cap-
tured the “need for security and privacy” (the independent, 
‘input’, variables); others the “security-enhancing activities 
and interactions in the development team” (the dependent, 
‘output’, variables).  

Figure 2 shows the processing we did to create these scores. 
The aim in each case was to create an ordinal score that ap-
proximated to linear across the range of raw data, so a higher 
score corresponds to more security (or more drivers towards 
security) and each increment represents a similar semantic in-
crease.  As shown, the Requirements Score reflects the secu-
rity need as the arithmetic sum of the three Likert-style re-
sponses encoded as integers; similarly, to explore the why, 
there are Developer Knowledge and Expertise Support 

 
Figure 2: Survey Security Scores 
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scores. We estimated a Security Update Frequency as the 
product of the answers to two questions; this had an exponen-
tial (Poisson) distribution, so to make it linear [3] we used a 
transformation: log(𝑥& + 1) to create the Security Update 
Frequency Score. Appendix C provides more details. 

The calculation of the Expertise Support Score is based on an 
assumption that direct expert involvement is more effective 
than ‘security champions’; the Requirements Score assumes 
that, for example, occasionally using two techniques is as ef-
fective as regularly using one; and the Assurance Technique 
Score assumes that, say, considering four techniques is as ef-
fective as consistently using one. Though reasonable as an 
approach, none of these scores are linear or even provably 
ordinal [44]; we anticipated that inconsistencies in the scor-
ing would add to the statistical variance but not obscure over-
all trends. See Section 5.5 for a post-hoc justification. 

In statistics, the usual relationship to look for is a linear one. 
In line with previous research in the field [16] we used the 
Pearson Correlation Coefficient (‘Pearson R’) calculation 
[14] to establish whether pairs of values had a significant lin-
ear relationship; this test is acceptable for Likert-style data 
[24,31].  

Given that the scores were not provably linear, we also inves-
tigated a more sophisticated modelling technique, creating 
Decision Tree models [41] for pairs of scores and using F-
Tests [13] to compare each with the simpler Pearson R model. 

In this analysis we treated the Security Update Frequency 
score as a dependent variable (output); and the Requirements, 
Expertise Support, and Developer Knowledge scores as inde-
pendent variables (inputs)4. The use of Assurance Techniques 
is likely to be affected by the latter three variables but may 
itself in turn affect the Security Update Frequency and other 
security outcomes; in the analysis, therefore, we treated the 
Assurance Technique score both as an independent and as a 
dependent variable.  

Since the analysis constituted multiple tests on the same data, 
we applied the Bonferroni correction [40], reducing the 
threshold for ‘significance’ accordingly to (5%)/5 = 1%. 
To validate the preconditions for the Pearson Correlation Co-
efficient test [14], we then constructed x-y plots of all the 
pairs of variables that showed significant correlation. 

4. Application Analysis Methodology 
In the second phase of the project, we downloaded and ana-
lyzed the apps corresponding to the survey responses. For 
analysis, we used a selection of state-of-the-art of vulnerabil-
ity scanners. Each one focuses on a different problem cate-
gory and produces a relatively low number of false positives. 

 
4Pearson’s R does not distinguish dependent and independent variables, so this 
affects only our choice of scores to correlate with each other. 

We chose mature tools that are openly accessible to Android 
developers.  

4.1. Description of Analysis Tools 
The tools covered three key areas: SSL Security, Crypto-
graphic API Misuse, and Privacy Leaks. We selected these 
areas based on previous work and because these cover a rep-
resentative range from the possible security and privacy vul-
nerabilities faced by application developers [34].  

SSL Security: A key concern in the secure treatment of infor-
mation is the correct use of secure transport mechanisms 
(SSL, TLS) when connecting to remote systems. To capture 
this aspect, we used two techniques. First, we used Mal-
loDroid [20] to inspect the correct use of certificate validation 
in the apps code. Second, we extracted any HTTPS URLs 
from the constant pools of the classes contained in the app 
using the OPAL framework [17] and checked the correspond-
ing server configurations and certificates using the com-
mand-line tools curl and openssl.  

Cryptographic API Misuse: Many apps use cryptographic 
measures to improve data security and privacy, and a key 
concern in the secure treatment of information is the handling 
of cryptographic primitives (e.g., for persistence). We run 
CogniCrypt [26] to capture this aspect. CogniCrypt uses 
static inter-procedural static program analysis to detect mis-
uses of the Java Cryptography API. The detected problems 
range from improper configuration of algorithms (e.g., use of 
AES with ECB) to incorrect order of calls to the API. As it is 
formulated as a static program analysis, CogniCrypt makes 
conservative assumptions (over-approximations) on the con-
trol flow of the program, which may produce false positive 
reports. 

Privacy Leaks: To find possibly harmful data flow that can 
lead to privacy leaks, we used FlowDroid [4]. This tool is de-
signed to find information flow in Android apps between de-
fined information sources and information sinks. For exam-
ple, the location APIs are considered as sources of private in-
formation, and the text message sending APIs as sinks. 
FlowDroid uses static inter-procedural data flow analysis to 
find evidence of directed information flow between these 
methods. We configured the tool with the default sources and 
sink for Android provided by the authors, which had been 
constructed by manual inspection of common vulnerabilities 
in Android apps. FlowDroid is not able to determine if the 
found information flow is to be considered an actual leak as 
it might also be intended to use the information in the partic-
ular context (e.g. for location-based services). 

Practical Approach: We downloaded the application binaries 
for at least one application by each of the survey respondents, 



wherever possible; we ran the full set of scanning tools on 
each, and counted the issues (reports of possible vulnerabili-
ties) generated. Appendix A lists the versions of the tools we 
used. 

4.2. Application Statistical Analysis  
As in the previous phase, we used graphical tools to explore 
the data, and linear analysis to explore relationships between 
the data. 

To investigate RQ2, we defined further scores to represent 
the outcome “fewer security defects” in each app analyzed.  
Figure 3 shows the processing involved. We anticipated that 
the issue counts would have a Poisson distribution; to permit 
linear analysis we used a log transformation5. As with the 
scores for developer behavior, we wanted scores that increase 
with increasing app security and privacy, and we therefore 
negated the log value. 

We used the same method as previously (Section 3.6) to look 
for relationships between these scores and the scores from 
Figure 2 covering the “need for security, involvement of spe-
cialist roles, and use of assurance techniques in a develop-
ment team” in RQ2.  

4.3. Ethical Considerations 
Our institutions’ Institutional Review Boards approved this 
study, including the use of publicly available contact details 
for the survey invitations. Additionally, we modeled our re-
search plan and survey procedure to adhere to the strict data 
and privacy protection laws in the UK and Germany and the 
General Data Protection Regulation in the E.U. We provided 
all participants with a form that informed them about the 
study purpose, the data we collected and stored, and an email 
address and phone number to contact the principal investiga-
tors in case they had questions or concerns. 

4.4. Survey Limitations 
As with most studies of this type, our work has limitations. 

The response rate for our online developer survey was very 
low, as might be expected from sending unsolicited emails to 

 
5 Specifically, log(𝑥& + 	k), where k is chosen to minimize skewness [3]; in 
practice we trialed different values of k, finding no difference to the results, so 
used the conventional research practice of k=1. 

prospective participants. However, our recruitment approach 
was incorporated by relevant previous work [1,2,54]. The low 
response rate may introduce some self-selection bias, but 
since the invitations made no mention of security, we have no 
reason to believe a priori that those who responded differ 
meaningfully in terms of security or privacy behavior from 
those who did not. 

All the survey data—except download count and last app up-
date date—is self-reported. Though we addressed this by 
keeping questions as fact-oriented as possible, this is an im-
portant limitation. 

In terms of the population, the survey reached app owners 
rather than all app developers; so, data about the respondents’ 
own experience is not representative of all Android develop-
ers, nor of software developers in general. 

4.5. App Analysis Limitations 
The static analyses we chose each consider specific catego-
ries of vulnerabilities. This may disregard other categories of 
issues which may also be security critical. Indeed, many vul-
nerabilities—especially privacy ones—will tend to be in the 
intended app functionality rather than in the detailed imple-
mentation, and we have no way to estimate these. However, 
we used detectors for a range of implementation issues which 
may be found through other methods, and which developers 
who consider security or privacy important would be ex-
pected to address.  

Static program analysis tools often report false positives, and 
the tools we used are no exception. Our approach for this sur-
vey, however, was to assume that the reported issue counts 
will correlate with the numbers of true vulnerabilities, and 
therefore that such counts can be used as a proxy for aspects 
of app security in statistical analysis. 

We were able only to analyze ‘free’ and ‘freemium’ apps, not 
ones where Google Play Store charges for download; this 
may introduce a bias. In cases where respondents have more 
than one app, the app we downloaded may not be one requir-
ing the security practices and priorities described in the sur-
vey. 

We considered improving the app analysis by ranking vulner-
abilities based on severity. However, the analysis did not 
identify vulnerabilities; it reported counts of ‘issues’ de-
tected, where an ‘issue’ is a potential vulnerability. To deter-
mine whether an issue represents a vulnerability would re-
quire detailed analysis of the source code; this source code 
was not available to the researchers, and decompilation was 
infeasible due to the widespread use of obfuscation tools. 

 
Figure 3: App Analysis Security Scores 
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We also considered distinguishing issues in the source code 
from issues in libraries, or using vulnerability ratings for li-
braries. However, although there have been several worth-
while tools developed to analyze the libraries used by An-
droid apps, including LibScout [6] and LibDetect [22], with 
the current state of the art they are not sophisticated enough 
to detect library versions reliably, nor are they integrated with 
other binary analysis tools to allow differentiation of issues 
in libraries from issues in the main code.  

5. Results 
This section describes our results, both from the survey and 
from the app analysis.  

5.1. Sample Validity 
Comparing the box plots for invitees with those for partici-
pants in Figure 4, we see that the average user rating and 
number of downloads for apps produced by the 345 develop-
ers who completed surveys are very similar to those for the 
55,000 invited. 

One survey question asked the respondent’s years of experi-
ence in software development. Figure 5 compares the results 
with answers to a similar question addressed to the 21,000 
Android developers out of the 89,000 developers who an-
swered the 2019 Stack Overflow developer survey [43]. As 

 
6 We specified this analysis after data gathering; accordingly, significance in 
any of the correlations should be considered suspect. However, a lack of sig-
nificance in a wide range of correlation calculations is a valid finding. 

will be seen, the respondents are generally more experienced 
than the corresponding general population (median 12 years; 
population median of 8 years; Mann Whitney 𝑝 = 10234). 

One concern was whether our app selection criterion (over 
100 downloads and one update) was too lenient, since little-
used apps may well have poor security. To test this, we used 
the Mann Whitney test comparing developers of apps with 
less than 1000 downloads against the rest6. We did this for all 
of the scores (Sections 3.6 and 4.2) and for all the numerically 
analyzable survey questions to see if the distribution was dif-
ferent for low-download apps. In the survey results and 
scores we found small p-values (<0.003) only for questions 
whose answers we expected to correlate with download 
counts: ‘How many apps have you developed’, ‘How many 
Android apps have your developed’ and ‘Is developing apps 
your primary job’, and we concluded that the populations 
were essentially the same. Doing the same Mann Whitney 
test on the scores in Phase 2, we found low p-values only for 
the Cryptographic API Misuse and Privacy Leak scores (p ~ 
0.016 for each). Though suggestive, these values are not sta-
tistically significant given the number of tests done on that 
same data. We concluded that there was no justification for 
changing our app selection criteria. 

Finally, to check the accuracy of respondents’ replies, we 
compared the respondent-stated app update interval with ob-
jective evidence. App update histories are not generally avail-
able from Google Play, but we did collect the last update date 
for each app we considered. We correlated the time since that 
last update with the participant-stated update interval using 
log scales: Pearson R=0.38, P=1e-9 (n=242). The tiny P value 
corroborates the assumption that the stated update frequen-
cies reflect reality; the moderate R value reflects that re-
spondents were asked the about updates to ‘their most fre-
quently updated app’ and not the app we considered, plus the 
randomness of where each app was in the release cycle. 

5.2. Findings on Self-Reported Developer Behavior 
The next sections describe the survey results for individual 
survey questions, without considering associations between 
answers7.  

Importance of Security and Privacy: Figure 6 shows respond-
ents’ ratings of the importance of security and privacy in their 
apps. For comparison, we also asked and show the im-
portance of other functional and non-functional require-
ments. We were surprised how many developers considered 
security and privacy important, with ratings comparable with 
multi-platform support and higher than for many features. 

7 The number of answers varies to each question or set of questions, giving 
different values for ‘n’ in each chart. 

 
Figure 4: Comparing Invitees (light blue)  

with Respondents (dark blue) 
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Team Structure: Only 42% of respondents were working in 
teams, the remainder being solo developers. Only 17% of re-
spondents received support from professional security ex-
perts. So, for RQ3 we calculate the ninety-five percent confi-
dence interval [48] for the proportion working with security 
experts in the Android app developer population as a whole 
as: 

Lower bound = 14%, Upper bound = 22% 

Of these few professional security experts discussed by re-
spondents, 33% were part of the development team and the 
remainder external. Their most common function was Pene-
tration Testing (44%), but they also provided Design Re-
views (39%), Audits (33%) and Training (27%).  

Some teams (18%) had a ‘security champion’, a non-expert 
providing security input to the rest of the team. Only 7% had 
both professional experts and champions. 

Developer Security Knowledge: Figure 7 shows how survey par-
ticipants rated their security expertise. Interestingly, very few 
considered themselves to have no knowledge; this is as we 
would expect given the level of development experience of 
participants (Section 5.1). 

Use of Assurance Techniques: Figure 8 shows the reported use 
of assurance techniques. Unsurprisingly, Threat Assessment 
for every build is rare (possibly those respondents consider 
the list of threats every day), as is Penetration Testing (auto-
mated penetration testing, perhaps; one participant explicitly 
mentioned doing this). But otherwise the proportions using 
each are fairly consistent across all the techniques. 

Combinations of Assurance Techniques: We investigated the 
extent to which teams used combinations of assurance tech-
niques. Figure 9 summarizes how many and how often the 
techniques are used. It shows the proportion of respondents 
using each number of the techniques (at least), separated out 
to show how often they used them. As will be seen, less than 
half had used even one technique; about a quarter used one 
or more regularly; and very few used as many as four regu-
larly. 

 
Figure 6: Importance of Different Requirements 
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Figure 8: Use of Assurance Techniques 



So for RQ4, the 95% confidence intervals for the proportion 
regularly using one or more of the given assurance techniques 
in the wider Android developer population [48] are: 

Lower bound = 22%, Upper bound = 30% 

We analyzed which combinations of techniques were popular 
amongst the 14% (57) of respondents who only used two or 
three regularly. The most popular were: 

Auto. Static Analysis Config. Review 37% 
Auto. Static Analysis Code Review 32% 
Code Review Config. Review 21% 
Threat Modelling Penetration Test 18% 

Security Updates: Figure 10 shows the frequency of security 
updates, calculated as the product of the reported update fre-
quency, and the reported proportion of security updates.  The 
95% confidence interval for the proportion with less than one 
update a year is 59% - 70%. 

5.3. Recent Changes in Team or Development Security 
Given how fast moving the field of software security has be-
come, it is also important to know what might have caused 
changes in the developers’ perceptions or actions around 

security. Two questions in the survey addressed this: one list-
ing possible reasons for security and privacy improvements 
and asking which had affected app security; and for those 
who mentioned an impact from the recent European GDPR 
legislation [19], a further question asking what changes they 
had made as a result. Since the GDPR legislation affects any 
apps sold in Europe, it impacts developers worldwide. 

Figure 11 shows the answers. Interestingly, the developers’ 
perception is that, even more than GDPR, the main security 
driver has been the developers themselves. Encouragingly 
very few (3%) reported security improvements as a conse-
quence of actual security issues affecting themselves, sug-
gesting that this is still rare; a few more (7%) reported ‘horror 
stories’—something bad happening to a competitor. 

Of the 45% of participants (n=133) who reported changes as 
a result of GDPR, Figure 12 summarizes the changes they 
made as a result. We observe that the majority of these 
changes were cosmetic, at least as far as the app itself was 
concerned: changing privacy policies or adding pop-up dia-
logs. Only 33 made substantive changes to improve user se-
curity or privacy (giving 95% confidence limits of 8% to 15% 
for the wider Android developer population [48]).  

5.4. Linear Analysis of Developer Survey Scores 
Table 1 shows the results of the analysis described in Section 
3.6. It correlates each of the two dependent scores represent-
ing “security-enhancing activities and interactions in the de-
velopment team” against four independent “need and mech-
anisms for security and privacy” scores. Non-italic figures 
highlighted in yellow indicate a statistically significant result 
(p<0.01) 
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Figure 12: Changes Due to GDPR 
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Figure 13 shows x-y plots of these significant results. Dots 
and vertical bars show the mean and its 95% confidence in-
terval for the y-readings corresponding to each x-value. The 
plots also show a simple linear regression line and its confi-
dence limits. The graphs validate the preconditions for the 
use of Pearson R [35]: particularly homoscedascity and lack 
of outliers.  

5.5. Post-Hoc Justification for Score Calculation and Analysis 
We observe that the first two plots also justify our choice of 
the calculation for the Requirements Score and Expertise 
Support Score since the use of assurance techniques shows a 
strong linear relationship to both scores. 

For each of the six pairs of values highlighted in Table 1, we 
compared Decision Tree models with the corresponding lin-
ear models. (F-Test, with a cut-off alpha 0.01). We found no 

significant differences between the six pairs of models, which 
justifies using the simpler Pearson R (linear) model. See Ap-
pendix D for details. 

5.6. Findings on Application Security Indications  
In the Phase 2 analysis, of the tools used, CogniCrypt re-
ported no issues for 32% of apps; FlowDroid for 35% and the 
Bad SSL/MalloDroid combination for 70%. Only 20% of 
apps analyzed showed no issues from any of the tools. 

5.7. Linear Analysis of App Analysis Scores 
Table 2 shows the results of the analysis described in Section 
4.2. It correlates each of three dependent scores representing 
“fewer security defects” against the four independent “need 
and mechanisms for security and privacy” scores. Non-italic 
figures highlighted in yellow indicate a statistically signifi-
cant result (p<0.01) 

Table 2: Pearson R Results (R, P) Correlating App Security Measurements with Developer-based Factors  
Independent: 

Dependent: 
Expertise Support Requirements Developer  

Knowledge 
Assurance  
Technique Use 

Cryptographic API Misuse -0.17, 0.016 -0.06, 0.37 -0.09, 0.17 -0.13, 0.047 
Privacy Leak -0.09, 0.20 -0.01, 0.85 0.02, 0.81 0.02, 0.81 
SSL Security -0.14, 0.049 0.01, 0.93 -0.02, 0.76 -0.08, 0.20 

 

Table 1: Pearson R Results (R, P) for Developer Survey Security Scores 
Independent: 

Dependent: 
Expertise Support Requirements Developer  

Knowledge 
Assurance  
Technique Use 

Assurance Technique Use 0.56, 3.9e-25 0.37, 1.5e-11 0.27, 8.6e-07  
Security Update Frequency 0.16, 0.0085 0.25, 2e-05 0.03, 0.61 0.41, 5.7e-13 

 

 

  
 

   
Figure 13: Cross-plots of the Scores with Significant Correlations 



Only one result achieves significance and bizarrely that result 
suggests a negative correlation: the involvement of security 
professionals and champions is associated with worse Cryp-
tographic API misuse outcomes. 

Figure 14 explores this odd finding. It shows that the effect is 
not large, and that both experts and champions seem to be 
associated with the negative correlation, though experts more 
so. We note, as well, that the p-value is only just significant 
given the Bonferroni correction (Threshold for significance 
0.05/3 = 0.017).  

Disappointingly, use of assurance techniques was not associ-
ated with better security outcomes, nor was developer secu-
rity knowledge, nor was a user requirement for good security. 

6. Discussion 
At first sight, the findings in Sections 5.6 and 5.7 give a de-
pressing view of app security. From Section 5.6 we see that 
over 80% of apps had reported defects from our analysis 
tools. From Figure 10 we see that the majority of apps get 
security updates less than once a year. From the analysis of 
the app security measurements, Table 2 shows that security 
outcomes seem to have little correlation with an app’s per-
ceived need for security and privacy.  

And Figure 12 shows that GDPR’s new compliance rules for 
apps have had little real positive impact. Certainly, in many 
cases cosmetic changes may have been all that was needed; 
but the finding suggests that GDPR has not been a strong 
force to improve app security and privacy.  

6.1. Adoption of Security Techniques by Developers 
However, there are positive aspects too. Considering the find-
ings in Section 5.2, Figure 7 shows us that the vast majority 
of the respondents consider themselves to have at least some 
security knowledge, and thus are likely to be aware of secu-
rity as a possible issue in their software development. Indeed, 

Figure 6 shows that more than 60% of the respondents con-
sider security to be very or extremely important to their users, 
and even more put the same value on privacy.  

Section 5.2’s combinations of assurance techniques used are 
particularly interesting in suggesting how security improve-
ment is happening. Though the analysis only covers a small 
fraction of the total population, those respondents it considers 
are the ones using only a proportion of the Assurance Tech-
niques and it therefore offers an insight into which techniques 
are adopted first. One would expect teams whose security is 
driven by external experts to adopt the Threat Assess-
ment/Penetration Test combination, since both of these activ-
ities can be carried out by the experts themselves; actually, 
rather more adopt tool-only techniques (Auto. Static Analysis 
and Config. Review), or code-review based techniques 
(Auto. Static Analysis and Code Review), perhaps because 
few have access to security experts (Section 5.2). 

This suggests that the adoption of assurance techniques is be-
ing driven by the developers themselves, rather than by ex-
ternal security experts, and so what we are seeing is devel-
oper-led security. This tallies with the reasons given for app 
security changes in Figure 11, where the most common rea-
son for changes was developer initiative. It also corresponds 
to the views of security experts, who emphasize the im-
portance of developer initiative in improving software secu-
rity [53]. 

6.2. Appropriate Use of Security Techniques 
Using security assurance techniques usually has a cost, both 
in time and in financial terms [45], and therefore it is poor 
economics to adopt them in cases where they are not required. 
From Table 1 we see that this is correctly reflected in the An-
droid ecosystem: the use of Assurance Techniques increases 
in line with the importance of security for the app. We sug-
gest that the correlation with the involvement of security pro-
fessionals/champions and with developer knowledge of secu-
rity may be an effect (expert developers and security profes-
sionals will tend to work on products that need security) as 
much as a cause (their involvement causes increased assur-
ance technique use). 

Updating apps also has a considerable cost, and again we 
would anticipate having more security updates in cases where 
security is important for the app. Again Table 1 confirms this 
behavior, and shows that, justifiably, there is no correlation 
between the security update frequency and the security expe-
rience of the developer.  

6.3. Impact on Real App Security 
It was disappointing that the use of assurance techniques did 
not appear to be a major factor leading to better security out-
comes when we analyzed the apps themselves. Even though 
the analysis tools can only detect a limited range of code level 
security issues, we expected more security-experienced 

 
Figure 14: Worse Cryptosecurity with Expert Involvement? 
 

 



developers and those using assurance techniques—especially 
Static Code Analysis—to generate fewer such issues.  

We conclude that other factors must drown out this effect. 
We observe, for example, that most app binary code will con-
sist of libraries, and even up-to-date libraries will differ enor-
mously in the number of such issues they may have. We hy-
pothesize that the scores generated by the tools we used de-
pend more on the nature of the libraries needed to implement 
the app functionality than on any attributes of the non-library 
code created by the developers; current tools cannot verify 
this effect (Section 4.5).  

More surprising is the finding that the involvement of profes-
sionals and champions seems to be associated with increased 
numbers of Cryptographic API issues. It seems unlikely that 
this is because they create the issues. Instead, we observe that 
our tools will not detect a failure to use cryptography in apps 
where it is required, whereas experts or champions will do so. 
We suggest that teams involving experts or champions will 
therefore tend to use cryptography more frequently, leading 
to more such issues. 

7. Summary and Conclusions 
This paper describes the creation and deployment of a survey 
to Android app developers, in which we asked them a range 
of questions related to their approach to security and privacy 
in app development; and a second phase in which we com-
pared the answers with the outcomes of running security anal-
ysis tools on one of their apps. The research addresses the 
questions as follows: 

RQ1: To what extent, and how, does a perceived need for 
security and privacy lead to security-enhancing activities and 
interactions in the development team? 

From the 335 survey responses analyzed, we found a high 
level of reported security need for the app development, but 
less use of practical security assurance techniques (Section 
5.2). Where such techniques were used, this was in propor-
tion to the perceived need, as was the involvement of profes-
sionals and security champions. The frequency of app secu-
rity updates followed a similar pattern (Sections 5.4, 6.2).  

Considering the “how” of RQ1: in the perception of respond-
ents to the survey, app security improvements have been pre-
dominantly driven by developers themselves (Section 6.1); 
this is supported by the observation that the assurance tech-
niques first adopted are those most easily available to devel-
opers. GDPR has also had an impact, though the resulting 
changes for GDPR have been mainly cosmetic (Section 5.3). 

RQ2: To what extent do the need for security, the involve-
ment of specialist roles, and the use of assurance techniques 
in a development team lead to fewer security defects? 

The results of the app analysis showed little relationship with 
the reported security drivers and development process from 
the survey; we believe this reflects the inability of the current 
generation of binary analysis tools to analyze libraries effec-
tively and separately from the main app code. We did how-
ever find the involvement of security specialists or champi-
ons to be associated with more Cryptographic API issues, 
probably since they correctly enforce much more Cryptog-
raphy use (Sections 5.7, 6.3) 

RQ3 What proportion of Android developers have access to 
security experts? 

Section 5.2 concludes that between 14% and 22% of devel-
opers work with security experts. 

RQ4 To what extent do Android developers actually use as-
surance techniques? 

Only between 22% and 30% regularly use assurance tech-
niques (Section 5.2) 

Further, contrasting the high need for security with the low 
use of assurance techniques and low availability of security 
professionals, we suggest that there is an urgent need for 
ways to support app developers in adopting security assur-
ance techniques in the absence of security professionals.  

7.1. Future Work 
As Section 6.3 discusses, we need binary analysis tools capa-
ble of: 

1. Detecting library versions 

2. Performing static analysis on library components 
separately from the main code.  

This is an active area of research; once such tools are availa-
ble, a further survey using these will provide both valuable 
results, and an indication of changes over time in Android 
developer security practices. 

More information is also needed to support developers in us-
ing these assurance techniques, starting with how developers 
currently use each one. Specific questions might address 
where developers go to get security advice; what tools they 
use to analyze their code; the methods they use for library 
analysis; how they approach penetration testing; what forms 
of code review they use; and how they tackle threat assess-
ment. A further online survey can investigate these questions. 
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Appendix A  Analysis Tool Versions 
The following are the versions of the tools we used for appli-
cation analysis. 

MalloDroid  Version Dec 30, 2013  
OPAL framework  Version 1.0.0  
curl Version 7.64.0  
openssl Version 1.1.1b 
FlowDroid  Version 2.7.1 
LibScout  Version 2.3.2 
CogniCrypt Version 1.0.0 
  

Appendix B  Survey Questions 
The following are the survey questions. Some questions were 
skipped if appropriate (marked with *). The answer formats 
are abbreviated as follows: 

YN Yes or No 
SS Single Selection. 
MS Multiple Selection 
LSS Likert-Style Scale: Extremely, though to 

Not at all. 
0-100 Slider selecting an integer 
N Integer 

In addition, ‘?’ indicates an ‘I don’t know’ option, and ‘O’ an 
‘Other’ option, where the participant could enter open text. In 
Q10 and Q21, the option descriptions give the encodings used 
in Appendix C .  

Q1-Q3 were text-only statements. 

Q4 Are you working in a team with others, such as develop-
ers, testers, project managers? [YN] 

Q5* What is your role? [SSO?] 
Programmer, Tester, Project Manager, Non-Spe-
cific 

Q6* What other roles apart from yourself are there in your 
team? [MS?] 

Programmer, Tester, Project Manager, Non-Spe-
cific 

Q7* About how many people (including developers, project 
managers, testers) are there in your team? [N] 

Q8 Please select all the ways you use to develop Android 
apps [MSO] 

Native Java, JavaScript, C#, Dart, Python, Kotlin, 
Lua, Native C++ 

Q10 How often did you release a new version of your app 
over the past two years? Please give your best estimate; if you 
have more than one app, please answer for that app that was 
most frequently updated. [SS] 

Never (0), Annually (1), Quarterly (4), Monthly 
(12), More frequently (24) 

Q11* Over the last one to two years, what content has been 
in your app updates (%)?  

New features [0-100] 
Non-security bug fixes [0-100] 
Security bug fixes [0-100] 
Third party library updates [0-100] 
Regular maintenance and refactoring [0-100] 

Q12 How important is each of the following for your app(s)? 
Runs on many different devices [LSS] 
Secure against malicious attackers [LSS] 
Protects users' privacy [LSS] 
Easy to use [LSS] 
Supports many features [LSS] 
Runs smoothly [LSS] 

Q13 How important is security for sales? [LSS] 



Q14 How knowledgeable do you consider yourself about in-
formation security? [LSS] 

Q15 Does your app development ever get support from pro-
fessional security experts? [YN?] 

Q16* Who are these professional security experts (on 
team/external)? [SS] 

Q17* What support do you get from them? Please select all 
that apply [MSO] 

Penetration testing Security training 
Audits Design reviews 
Working on team I don't know  

Q18* About how often do you get support from them? [SS?] 
Continuously, Weekly, Monthly, Quarterly, Yearly 

Q19 Which of the following have led to changes in the secu-
rity of your app(s) in the past one to two years? [MSO] 

Decision from management  
Security crisis within your organization  
Media coverage about app security  
Something bad happening to a competitor  
Pressure from a partner company  
Drive from product or sales team  
Pressure from customers  
Developer initiative  
GDPR requirements  
Something bad almost happening to your organiza-
tion  

Q20* What changes have you made as a result of GDPR re-
quirements? [MSO] 

Addition of popup dialog(s)  
Removal of analytics or advertising based on it  
Adding or changing privacy policy  

Q21 How much do you use each of the following techniques 
to find security problems? [SS for each: 

Every build (4), Every release (3), Once or occa-
sionally (2), Decided not to use (1), Haven’t consid-
ered it (0).] 

Producing a threat assessment for the app 
Scanning code with an automatic code review tool 
Using a tool to scan for libraries with known vulnerabili-
ties 
Code review by someone other than the developer 
Penetration testing 

Q22 What other techniques do you use (if any)? [O] 

23 Do you have a security champion within your team? A 
security champion -- or security hobbyist -- is a non-expert, 
who takes a particular interest in security. [YN?] 

Q24 For how many years have you been developing Android 
apps? [N] 

Q25 For how many years have you been programming in 
general (not just for Android)? [N] 

Q26 About how many Android apps have you helped develop 
in total? [N] 

Q27 Is developing Android apps your primary job? [YN] 

Q28 Have you contributed to an open source project in the 
past year? [YN] 

Q29 To which gender identity do you most identify? [SS]: 
Female, Non-binary, Male, Prefer not to say 

Q30 What is the main spoken language you use at work? [SS] 
English, Chinese, Spanish, Arabic, German, French, 
Other 

Q31 In which country do you currently reside? [SS]  

Appendix C  Calculation of Scores 
This section describes how scores were calculated from the 
survey answers. 

Likert-Style Scales were encoded as:  
Extremely … (4), Very … (3), Moderately … (2), 
Slightly …(1), Not … at all  (0)  

Assurance Technique Score: sum of all five sub-questions of 
Q21, each encoded as shown.  

Developer Knowledge Score: LSS encoding of Q14 

Expertise Support Score: as the following table. 

Q23: \ Q15: No Yes 
No 0 2 
Yes 1 3 

 

Requirements Score: sum of LSS encodings for Q12 (Secure 
against malicious attackers), Q12 (Protects users' privacy) 
and Q13 

Security Update Frequency Score: This required an Update Fre-
quency Estimate of Q10 encoded as shown multiplied by Q11 
(Security bug fixes) and divided by 100. The score was Log 
(this value plus 1).  

Appendix D  Model Comparison 
To compare a decision tree model, we used the Python scikit-
learn library’s DecisionTreeRegressor, compared with Stats-
Models’ OLS (Ordinary Least Squares).   

We compared each pair of models using the F-Test calcula-
tion [13], taking the number of ‘leaf nodes’ in the decision 
tree as the degrees of freedom for that model in the F-Test. 
Applying the Bonferroni correction [40], we took the re-
quired Alpha P-value for significance as 0.01. The calculated 
P-values values ranged from 0.2 to 0.5, and did not approach 
that value. 


