eldorado.tu-dortmund.de/server/api/core/bitstreams/d6ca5dc0-756d-4f45-8c4c-4f2ac0572f02/content
Computational Recognition of RNA Splice Sites by Exact Algorithms for the Quadratic Traveling Salesm
w) ∈ V (3), we derive the following linear IP formulation for the QTSP:
minimize ∑
(u,v,w)∈V (3)
cq((u, v, w)) · t(u,v,w)
subject to constraints (3), (4), and (5)
r(u,v) = ∑ w∈V :
(u,v,w)∈V (3)
t(u,v,w) [...] v, w ∈ V, |{u, v, w}| = 3, L ≥ 4.
2. The triangle inequalities of Type II:∑ (u,v)∈S(2)
r(u,v) − ∑
(u,v,w)∈S(3)
t(u,v,w) ≤ 1 (9)
are valid for the QTSP for all S ⊆ V, |S| = 3.
3. The strengthened subtour [...] quadratic objective function:
minimize ∑
(u,v,w)∈V (3)
cq((u, v, w)) · r(u,v) · r(v,w)
subject to constraints (3), (4), and (5)
Computation 2015, 3 293
Linearizing this objective function by replacing …